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Abstract

In this dissertation, we are interested in solving a linear inverse problem: inverse elec-

trophysiological (EP) imaging, where our objective is to computationally reconstruct

personalized cardiac electrical signals based on body surface electrocardiogram (ECG)

signals. EP imaging has shown promise in the diagnosis and treatment planning of

cardiac dysfunctions such as atrial flutter, atrial fibrillation, ischemia, infarction and

ventricular arrhythmia.

Towards this goal, we frame it as a problem of learning a function from the domain of

measurements to signals. Depending upon the assumptions, we present two classes of

solutions: 1) Bayesian inference in a probabilistic graphical model, 2) Learning from

samples using deep networks. In both of these approaches, we emphasize on learning

the inverse function with good generalization ability, which becomes a main theme of

the dissertation. In a Bayesian framework, we argue that this translates to appropri-

ately integrating different sources of knowledge into a common probabilistic graphical

model framework and using it for patient specific signal estimation through Bayesian

inference. In learning from samples setting, this translates to designing a deep net-

work with good generalization ability, where good generalization refers to the ability

to reconstruct inverse EP signals in a distribution of interest (which could very well

be outside the sample distribution used during training). By drawing ideas from dif-

ferent areas like functional analysis (e.g. Fenchel duality), variational inference (e.g.

iv
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Variational Bayes) and deep generative modeling (e.g. variational autoencoder), we

show how we can incorporate different prior knowledge in a principled manner in a

probabilistic graphical model framework to obtain a good inverse solution with gener-

alization ability. Similarly, to improve generalization of deep networks learning from

samples, we use ideas from information theory (e.g. information bottleneck), learning

theory (e.g. analytical learning theory), adversarial training, complexity theory and

functional analysis (e.g. RKHS). We test our algorithms on synthetic data and real

data of the patients who had undergone through catheter ablation in clinics and show

that our approach yields significant improvement over existing methods. Towards the

end of the dissertation, we investigate general questions on generalization and sta-

bilization of adversarial training of deep networks and try to understand the role of

smoothness and function space complexity in answering those questions.

We conclude by identifying limitations of the proposed methods, areas of further im-

provement and open questions that are specific to inverse electrophysiological imaging

as well as broader, encompassing theory of learning and generalization.
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Chapter 1

Introduction

Dubito, ergo cogito, ergo sum.

(I doubt, therefore I think, therefore I am.)

- René Descartes

In this dissertation, we consider an inverse problem of estimating cardiac electrical

signals from body surface electrocardiograms. We look at this problem from the per-

spective of learning theory and 1) propose several approaches to solve the problem,

2) ask the fundamental questions about the problem and algorithms. Although we

are firmly grounded in this inverse problem, the fundamental questions raised while

solving the problem has lifted the problem to a more general nature and has helped

us answer some questions related to the learning theory itself which we discuss at the

latter portion of the thesis.

1.1 Motivating Problem

The heart is an electromechanical system. Rhythmic contraction of the heart is induced

by coordinated electrical propagation throughout the heart. Compared to advances

1



CHAPTER 1. INTRODUCTION 2

in imaging technologies for cardiac structures, however, there is inadequate progress

in our ability to observe electrical activity of the heart. Current clinical practice to

assess individual’s cardiac electrophysiology is mainly restricted to either remote body

surface electrocardiograms (ECGs), or invasive catheter mapping on the heart surface

(epicardium and endocardium) with limited spatial resolution.

Computational electrophysiological (EP) imaging aims to fill this gap by computation-

ally reconstructing subject-specific cardiac source dynamics from noninvasive ECG. It

has shown promise in the diagnosis of cardiac dysfunctions such as atrial flutter [89],

atrial fibrillation [26], ischemia [70], infarction [107] and ventricular arrhythmia [106].

However, computational EP imaging is an ill posed inverse problem. The source of

this ill-posedness is the fact that ECG is an integral effect of all the electrical sources

inside heart. If we seek solution throughout heart transmurally, the source of electrical

activity is distributed transmurally throughout the heart and due to the law of electro-

magnetism, different configurations of cardiac electrical sources could result in the same

ECG observation on the body surface, making the inverse estimation ill posed [18,85].

This problem is further exacerbated by the lack of sufficient measurements of ECG on

the body surface. Solving this inverse problem to perform EP imaging is the main goal

of this dissertation.

It is clear that solving for the EP signals based solely on the ECG data is impossi-

ble, especially in cases where we are looking for the transmural source. Luckily, we

have other sources of knowledge. For example, we know about the physiology of hu-

man hearts. We have rich but general knowledge about the pattern of electrical signal

propagation over time and throughout the heart, although specific propagation pat-

tern might be different among different individuals. Similarly, the cardiac electrical

field propagates in a manner similar to a wavefront propagation and therefore spatial

gradient of electrical voltage is sparse at a time instant. We would benefit immensely

by integrating these knowledge while solving the inverse problem.

In this dissertation, we want to develop a principled way to look at the inverse problem.

Towards that goal, we view the inverse problem as a learning problem. From this

perspective, the goal is to learn a function that maps an ECG measurement to the
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cardiac electrical signal. Then, we propose two types of methods to learn the inverse

function: 1) Inference in a probabilistic graphical model (PGM), 2) Learning from the

samples. By using rich literature of Bayesian Inference, Learning Theory and Machine

Learning in general, we propose several methods to solve the inverse problem. In this

process, we answer some fundamental questions related to algorithms and learning in

general while we leave some as open questions.

1.2 Mathematical Formulation

We start with a general setup of inverse problem and specialize it to inverse EP imag-

ing whenever appropriate. Let X and Y be, respectively, the signal domain and the

measurement domain in a general inverse problem. In the inverse EP imaging, X rep-

resents the domain of cardiac electrical signal and Y denotes the ECG measurement

domain. There exists a certain model, deterministic or probabilistic, that maps each

x ∈ X to y ∈ Y . In a deterministic setting, we denote this relation by a function g

such that y = g(x). In a fully probabilistic setting, we denote this relation by a con-

ditional distribution pY|X (y|x). Then, framed as a learning problem, inverse problem

is the problem of obtaining the inverse conditional relationship pX|Y(x|y). These ideas

are pictorially illustrated in Fig. (1.1). We can simplify the problem to the task of

obtaining a deterministic inverse function, f which maps y to x. In a unified way, we

can connect the deterministic prediction and probabilistic prediction as :

f(y) =

∫
xpX|Y(x|y)dx (1.1)

i.e. the deterministic inverse mapping is the mean of the probabilistic conditional

distribution.
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Figure 1.1: A high level representation of the inverse problem

.

1.3 Learning and Generalization

There are two key questions: 1) How to solve this inverse problem framed as learning

problem? 2) What does it mean to solve an inverse problem? Following two subsections

are dedicated to elaborate how we answer these questions.

1.3.1 Learning

To solve the learning problem, we approach from two general perspectives: 1) Using

probabilistic graphical models and inference, 2) Learning directly from samples using

deep networks. These two learning approaches have been depicted in Fig. 1.2.

Inference in Probabilistic Graphical Model

In this approach, we create a probabilistic graphical model, directed graphical mod-

els [11], to be precise. As shown in Fig.1.2(A), the signal becomes the random variable
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Figure 1.2: Pictorial representation of two ways of solving the inverse problem. Essen-

tial difference lies in defining the joint distribution and algorithm used to obtain the

conditional distribution

.

x with its domain X . The the prior distribution, pX (x) encodes our belief we want

to enforce about the signal. The forward model, is incorporated into the likelihood

function pY|X (y|x) meaning the y that are consistent with the forward model are more

likely. We incorporate our bias and prior knowledge through the modeling of likelihood

and prior distribution and carry out Bayesian inference to estimate the inverse condi-

tional distribution, pX|Y(x|y), which is what we want. This general framework is always

the same in using PGM and inference. We usually have freedom in defining relations

through graphical model, choice of conditional distributions and prior distributions
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where we can inject useful prior knowledge as bias.

Learning from Samples

Fig.1.2(B) shows another general method of learning the inverse solution. In this ap-

proach, we are interested in designing a learning algorithm which takes in samples,

{(xi, yi)}, from the joint distribution p(x, y) and directly outputs a conditional distri-

bution pX|Y . Comparing with the inference in PGM, we could think of this method as

directly computing required posterior distribution, where the notion of prior and like-

lihood are only implicit. Correspondingly, we do not utilize knowledge in the form of

prior or likelihood distributions. Nor do we enjoy the benefit of encoding human knowl-

edge about relationship between known random variables into the graphical model.

Rather, we try to learn everything in an automatic way using pairs of data in the heart

and observed on the body surface. We still use information of physics and physiology,

but we do so by feeding physics-based simulation data to the algorithm. In a way, this

approach provides us more flexibility but less structure in our learning.

1.3.2 Generalization

Suppose we have found a solution using one of the approaches; how do we evaluate

the solution? We propose to do so with the generalization ability of the solution.

Since we have two general approaches to obtain the inverse solution, the definition

of generalization also takes different form in each approach. This is particularly true

because in probabilistic model, we do not have a training and test sets as in typical

machine learning. Therefore, the ability to generalize refers to how good the solution

is in average when it is measured throughout the distribution of interest. However,

in learning from samples, we have training and test set and we need to compare the

performance in those two sets to understand generalization.
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Inference in Probabilistic Graphical Model

In this case, good generalization means that the statistical inference yields good solu-

tion in all test cases. Since there is no training set, all the samples from distribution

of interest are like the test cases. To concretely explain this notion, we we define the

following quantity as the goodness:

Goodness = Ep(x,y)[−`(f(y), x)] (1.2)

where ` : X × X → R measures the discrepancy between the prediction of the learnt

function, i.e., f(y) and the ground truth signal value x. Let us call the distribution

where we evaluate the inverse function as the ’distribution of interest’ and denote it

by p∗(x, y). It is reasonable to define generalization to be the goodness measure in

the distribution of interest p∗(x, y), i.e. replacing p(x, y) = p∗(x, y) in eq.(1.2). We

say that the inverse solution has good generalization if −`(f(y), x) is high throughout

the distribution of interest regardless of how the inverse solution was obtained. In a

Bayesian setting, generalization corresponds to average accuracy during testing since

there is no training set.

To obtain good solution in all test cases, we need to overcome the lack of information in

the forward model, which is achieved by integrating information from different sources

using probabilistic graphical model. Later, we show that this is possible by appropriate

modeling of information through prior distribution and hierarchical representation in

graphical model. One key challenge in solving for the inverse solution using graphical

model and inference is to be able to adapt a common prior knowledge to different

patients. We address this problem using hierarchical graphical model as a prior and

adapting hyper-parameters.

Learning from Samples

In learning function from samples, we take supervised learning approach where we

reserve a set of data to learn the inverse function and other set of data to test how well
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the learnt function generalizes to the test data. Therefore, we differentiate between

the goodness in the training and the whole distribution of interest or just the test

distribution not used in training. In this setup, we often define generalization gap as

the difference between the two goodness measures as:

Generalization gap = Eptrain(x,y)[−`(f(y), x)]− Ep∗(x,y)[−`(f(y), x)] (1.3)

The definition of generalization gap in this sense matches that in the machine learning

literature and the smaller the generalization gap, the better. Improving generalization

requires us to think from the perspective of learning theory, sampling and complexity

and answer some fundamental questions.

1.4 Research Questions and Contributions

To solve the inverse problem of EP imaging, we intend to design learning algorithms

that would yield an inverse function from ECG data to the cardiac electrical signal

while maintaining good generalization ability.

1.4.1 Inference in Probabilistic Graphical Inference

In the first approach, we argue that good generalization can be achieved if we can

adapt the population knowledge by integrating it with the data using a probabilistic

framework and performing Bayesian inference. But, this adaptation is challenging,

especially if we have to do it for each personalized case. That brings us to our first key

question.

Q. How can generalization be improved in a PGM and inference framework

by facilitating adaptation of prior knowledge for each personalized case?

Looking at a finer scale helps us divide this question into sub-questions which we

answer in next chapters. The physiological knowledge like the general shape of the
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TMP or differential equation guiding propagation of TMP is rich and has been popular

in inverse EP imaging. To apply this knowledge for the personalized estimation is

difficult because good physiological models come with a set of parameters that differ

among individuals, pathological conditions and tissue properties, about which we do

not have prior knowledge. Fixing these parameter values to standard values might

introduce model error while their simultaneous adaptation is challenging due to their

high dimensionality and complex relation with cardiac electrical signal. Hence, it is

challenging to generalize this knowledge to patient specific inference. This brings us

to our first set of research questions:

Q. 1.a) How can the population knowledge be adapted for patient specific

inference?

Q. 1.b) How can the prior knowledge about the sparsity in the gradient

domain and dynamics of TMP signals be combined in principled way?

Joint inference of error and signal :

To answer these research questions, we propose principled probabilistic modeling of

the electrophysiology as well as error that might be introduced into the EP model. To

address the challenge due to introduction of additional unknown random variable, we

add knowledge about the sparsity of this error random variable in the gradient domain

using heavy tail distributions and variational approximations. After we have incor-

porated different sources of information by exploiting the hierarchical representation

ability of the probabilistic graphical methods, we perform inference of all unknown

random variables at the presence of ECG data. To overcome difficulty in tractability

of posterior distribution, we use variational posterior distribution as well as expecta-

tion maximization to jointly learn some estimates and posterior distribution. By using

Fenchel duality, we also introduce tractability of Gaussian distribution. All in all, the

inference amounts to iterative update of distribution parameters associated with the

unknown random variables. At the end, we obtain a learning algorithm of iterative

nature which yields an estimate of distribution of TMP given ECG data. We describe

the details in chapter 4.

Moving a little bit further towards data-driven approach and circumventing the issues
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in adapting population knowledge using traditional representation (like simulation dy-

namic model), we ask if we can use an alternative representation to describe generation

of EP signals such that the representation would also help in simultaneous adaptation

during inference. This brings us to our second research question.

Q. 2. How can we improve generalization with an alternative representation

of prior knowledge such that it allows efficient inference?

Deep generative model prior :

To answer this question, we take advantage of the recent breakthrough in deep learning.

First we use a variational autoencoder (VAE) to learn a generative model of transmem-

brane potential (cardiac electrical signal), TMP in an unsupervised way. This way we

learn a distribution of the latent generative factor, z, and conditional dependence be-

tween latent factor and TMP signal, x, i.e. p(x|z). Once we have trained VAE, we then

use conditional relation between latent factor and TMP, p(x|z), as conditional prior of

TMP. The machine-learnt functions describing relationships between random variables

are expressive and amenable to inference. We show that we can perform inference in the

resulting graphical model by using expectation maximization and exploiting gradient

descent feature of deep network. This is described in chapter 5.

1.4.2 Learning from Samples

In the second half of this dissertation, we reach the fully data-driven machine learning

approach; i.e., our inverse function relies solely on data samples. Here, we are interested

in finding an algorithm that takes in a large number of ECG-TMP pairs and gives out

a good estimate of conditional distribution of TMP signals on ECG in both training

and test set. Typically, a neural network is used to parameterize the conditional

distribution. So, we are interested in understanding the generalization ability of such

a neural network function as an inverse solution. We again pose question about the

generalization ability of the inverse solution as follows:

Q. How can we learn from samples an inverse EP imaging function that can
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also generalize well outside sample distribution?

We go one step deeper into this question. Based on the theory of learning, we iden-

tify two independent factors that affect the generalization in the purely sample based

approach: 1) possibility of shift in training and test distribution of the input space, 2)

smoothness and regularity properties of the conditional distribution. These two factors

are somewhat orthogonal to each other. The former is related to the distribution of the

measurement space, Y while the latter is related to regularity property of the inverse

function. Correspondingly, we have finer level questions:

Q. 3. a) How can we understand and improve generalization when there is

possibility of shift in training and test distribution?

Q.3. b) How can we understand and quantify the role of smoothness and

regularity properties of the neural networks regarding generalization?

Learning an invariant representation :

To answer the first question, we introduce the idea of learning an invariant represen-

tation. In order to achieve good generalization to the test set that is shifted from the

training set, we propose to learn a representation that is invariant to the shift in those

distributions. We proposed two ways of enforcing invariance: 1) adversarial training,

and 2) learning minimal, sufficient representation using information bottleneck princi-

ple. The details are described in chapter 7.

Role of smoothness :

To answer the second question and formally treat the role of smoothness and regu-

larity properties of neural networks, we apply the notion of variation from Analytical

Learning Theory. We show theoretically that introducing stochasticity in the latent

representation reduces the variation of the decoder which helps in learning functions

with good generalization properties. Experimentally we show that the generalization

ability of a neural network can be improved by using a stochastic latent space and

employing the information bottleneck principle to learn a minimal, sufficient represen-

tation. We derive the variational lower bound of the information bottleneck objective
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as the loss function which is easily optimized with respect to the parameters of the

neural network by using stochastic gradient descent. We support our arguments with

carefully designed experiments. The details of this approach are described in chapter

6.

Complexity and control :

Continuing further in this direction, we seek to investigate the role of smoothness

regarding generalization of neural networks. We seek to understand how to quantify the

degree of smoothness and precisely how it is connected to the generalization ability. Our

last contribution is only a precursor in this direction. We establish that the notion of

complexity could be a good measure of smoothness. We also show that minimizing this

complexity measure eradicates a pathology of generative adversarial networks (GANs)

by stabilizing the training. This is described in chapter 8.

Below is a graphical overview and organization of the contributions in this dissertation.

Figure 1.3: Overview of dissertation

.



Chapter 2

Foundation Literature

If I have seen further than others, it is by standing upon the shoulders of giants.

- Issac Newton

2.1 Probabilistic graphical model and Inference

2.1.1 Introduction

Probabilistic graphical models are diagrammatic representation of the joint distribu-

tions of random variables in the form of a graph. Through this diagram, it is easy to

express the relation between different random variables thereby providing a structure

to the dependence between different random variables. Simple inspection of the graph

can provide insights, for example of conditional independence between different random

variables. Complex manipulations required to perform inference can be understood as

graphical manipulations [11].

By the definition, a graphical model (see Fig. 2.1) is a graph containing nodes and

edges. The nodes represent random variables while the edges represent relations be-

13
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tween random variables. These graphical models can be divided into directed and

undirected depending on the the presence or absence (respectively) of the direction-

ality of the edge in the graph. There is one more type of graphical model known as

factor graph which contains a relation node between random variable nodes. This fac-

tor graph, therefore, generalizes both the directed and undirected graphs and posses

unique ability to construct graphical model with hybrid structure: containing a sub-

graph as directed and another subgraphs as undirected graph.

2.1.2 Directed Graphical Models and Inference

A directed graphical model a directed graph with nodes as the random variables

and directed edges encoding the conditional dependence. This graphical model pro-

vides information about the generative process and dependence. Using rules like D-

separation [84], we can identify independence through graphical model. These knowl-

edge can be used to quickly write down the joint distribution from the graphical model.

Expectation Maximization

Consider a graphical model as shown in Fig. 2.1(a). Suppose our objective is to

maximize p(y|θ) with respect to θ. It might be difficult to integrate out the latent

variable z. In such cases, we first note that maximizing p(y|θ) is same as maximizing

log p(y|θ) with respect to θ. Then we decompose log p(y|θ) with respect to θ as follows:

log p(y|θ) = L(q,θ) +KL(q||p) (2.1)

where L(q, θ) =

∫
q(z) log(

p(y, z|θ)

q(z)
) (2.2)

KL(q||p) =

∫
q(z) log(

q(z)

p(z|y,θ)
) (2.3)

To maximize the likelihood p(y|θ), first the KL divergence is minimized by setting

q(z) = p(z|y,θ), then eq. (2.2) is maximized with respect to θ by maximizing∫
q(z) log p(y, z|θ) with respect to θ with the updated q(z) = p(z|y,θ). Therefore,
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Figure 2.1: z and y are random variable while θ is a parameter in (a) and no parameter

in (b). Typically, ’parameter’ is reserved when we intend to infer only a point estimate,

whereas by a circular node, we typically represent a random variable whose distribu-

tion is of interest. The graphical model in (a) immediately enables us to decompose

distribution in the following way: p(y, z|θ) = p(y|z, θ)p(z|θ)
.

expectation maximization [28] is a procedure to alternatively update posterior of the

latent random variable and the value of parameter to be optimized with respect to.

Also, note that this procedure is useful when we have a situation where it is difficult

to integrate out the latent variable, but it is relatively simple to find the posterior of

the latent variable z given parameter and data y, i.e., p(z|y,θ). In many situations,

the posterior p(z|y,θ) is also intractable. In such cases, we can use other methods to

obtain q(z) as a close approximation of p(z|y,θ) instead of using the exact posterior.

This is the strategy we use later for our inference.

Variational Bayes

To understand variational Bayes, we imagine a generative process where y is generated

by z as shown in Fig.2.1(b). Our objective is to obtain a posterior distribution p(z|y).
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Similar to expectation maximization, we can decompose log likelihood as follows:

log p(y) = L(q) +KL(q||p) (2.4)

where L(q) =

∫
q(z) log(

p(y, z)

q(z)
) (2.5)

KL(q||p) =

∫
q(z) log(

q(z)

p(z|y)
) (2.6)

Note that the decomposition is similar to EM above, except for the parameter θ. Here,

all the parameters are absorbed into the variable z and we want joint posterior of all of

them given y. Unlike before, our objective here is to find q(z) as close to posterior as

possible. Therefore, we are interested in minimizing eq.(2.6). Since log p(y) is constant

in eq. (2.4), we can equivalently maximize L(q), also known as evidence lower-bound

(ELBO), with respect to q. The distribution q(z) is the variational distribution and

therefore this type of procedure to obtain posterior distribution is called Variational

Bayes.

Later we will talk about large scale method to minimize eq.(2.5) using a so called

recognition neural network. Here, we will discuss about a very popular method to

obtain approximation of the posterior by using mean field approximation. Minimization

of eq.(2.5) with respect to arbitrary distribution, q is very difficult. Therefore, we

need to make further assumptions to restrict the class of distribution on which we

can minimize for the posterior distribution. Mean field approximation refers to the

assumption that the posterior q(z) is independent in its components, i.e. q(z) =∏
i q(zi). With this assumption, we can simplify optimization of eq.(2.5) to simple

computation of expectations as follows:

L(q) =

∫ ∏
qi

[
log p(y, z)−

∑
i

log qi

]
dz

=

∫
qj

[ ∫
log p(y, z)

∏
i 6=j

qidzi

]
dzj −

∑
j

∫
qj log qjdzj

=

∫
qj log p̃(y, zj)dzj −

∫
qj log qjdzj −

∑
i 6=j

∫
qi log qidzi + const. (2.7)

where log p̃(y, zj)dzj =
∫

log p(y, z)
∏

i 6=j qidzi = Ei 6=j[log p(y, z)]. Our objective is to

maximize L in eq.(2.7) with respect to q. If we fix all the qis except qj, we can see
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that eq.(2.7) can be easily maximized by setting qj = p̃(y, zj) because the first two

terms produce negative of KL divergence. Thus, we can obtain posterior distribution

satisfying mean field approximation by simply updating posterior distribution in each

component as follows:

log qj(zj) = Ei 6=j[log p(y, z)] + const. (2.8)

Variational Bayes is most effective in cases where the posterior is known to be of certain

form. For example, any distribution with only quadratic terms in the exponent must

be a Gaussian distribution. This can be achieved by using conjugate priors in the

Bayesian inference. In such cases, variational Bayes corresponds to the updates of the

parameters of distributions qj. In a directed graphical model, this corresponds to the

update of parameters of each node sequentially and in a cyclic manner.

Other methods

Other popular methods of inference are sampling based methods and neural network

based methods. Sampling based methods require some form of sampling from the joint

distribution and yields samples from the posterior distribution. These methods are

effective if we need samples from the posterior or if we need to compute expectation

with respect to the posterior distributions. Some commonly used sampling methods for

the inference are Markov chain Monte Carlo(MCMC) and its variants, Gibbs sampling,

slice sampling and other hybrid methods [11].

With the recent breakthrough in deep learning, many algorithms have emerged com-

bining ideas from variational inference and sampling methods. Some recent works

in this direction are variational autoencoder [58], adversarial variational Bayes [75] ,

variational inference with normalizing flow [90], inverse autoregressive flow [59], etc.
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2.2 Deep Generative Models

Deep generative models loosely refer to the graphical models with deep neural connec-

tions. Consequently, samples from complex distributions can be generated by using

trained neural networks. Deep belief networks, deep Boltzmann machine, variational

autoencoder and generative adversarial networks are examples of deep generative mod-

els [42]. We briefly review variational autoencoder (VAE) as it is the most relevant one

for our work.

2.2.1 Variational Autoencoder

Suppose our objective is to obtain a posterior distribution p(z|y) in the graphical model

Fig. 2.1(b). As described earlier in the Variational Bayes section, we can do so by

maximizing evidence lower-bound (ELBO) L with respect to a variational distribution

q(z|y). Unlike before, in a deep generative model, the variational posterior approxima-

tion is parameterized with neural network and we maximize L in eq. (2.5) with respect

to parameters of the neural network. This network is also called recognition network.

Unlike variational inference, however, a variational autoencoder is primarily concerned

with autoencoding. Therefore, both the conditional distributions p(y|z) and q(z|y) are

assumed unknown and are parameterized with neural networks. Then, we maximize

L with respect to both of these network parameters. With these parameterization, we

can write the ELBO, L as:

L(q) = Eqφ(z|y)

[
log pθ(y|z)

]
−KL(qφ(z|y)||p(z)) (2.9)

where θ and φ represent parameters of neural networks. The recognition network is

called encoder and likelihood network is called the decoder. The first term in the ELBO

(eq.(2.9)) corresponds to reconstruction of y by first passing through the encoder and

then through the decoder. This resembles the loss in a traditional autoencoder. In the

VAE, however, we have an additional second term which behaves as a regularization

term corresponding to minimization of the KL divergence between the posterior and the
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isotropic Gaussian distribution. This term tries to make the variance of the posterior

distribution high (one) as much possible.



Chapter 3

Background and Related Works

But although all our knowledge begins with experience,

it does not follow that it arises from experience.

- Immanuel Kant

3.1 Electrophysiological imaging

The heart is divided into four chambers: left and right atrium and left and right

ventricles. Right atrium receives deoxygenated blood from the body through veins and

pass it to the right ventricle which pumps blood to the lungs, where blood is oxygenated.

The oxygenated blood is collected at left atrium which is then passed, through mitral

valve, to the left ventricle which pumps it throughout the body. This constitutes a

cycle. The heart is an electromechanical system. The electrical conduction system

plays crucial role in the mechanical contraction and expansion of the cardiac muscles.

20



CHAPTER 3. BACKGROUND AND RELATED WORKS 21

Figure 3.1: Schematic diagram of transmembrane potential (TMP)

.

3.1.1 Cardiac Electrophysiology

Ion channels embedded within the cellular membrane of cardiac muscle cells facilitate

the propagation of cardiac electrical signals. The membrane current resulting from the

membrane conductance change produces potential difference across the cell membrane

(between intracellular and extracellular space), known as the cardiac transmembrane

potential (TMP) or action potential. At rest, this potential difference maintains ap-

proximately 90mV and changes to about +30mV under large electrical stimulus, called

depolarization. TMP remains at this high voltage stage for a while (plateau) before re-

turning to the resting state (repolarization) (Fig 3.1). Furthermore, diffusion of action

potential between the cells allows the cell-to-cell transmission of the activation with-

out attenuation along distance from the starting cells. The action potential, or TMP

dynamics, represents the electrical activity within a single myocyte, purkinje fibres or

nodes over time, and its propagation throughout the heart constitutes the whole image

of cardiac electrical activity.

The electrical conduction system consists of some key nodes for transmission of elec-

trical signals in the heart (see Fig.3.2). In a normal sinus rhythm, the electrical signal

arises at sinoatrial (SA) node in the right atrium causing contraction of atria. Then
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Figure 3.2: Fibre diagram of the heart [62]

.

the signal reaches atrioventricular(AV) node in the septum. After a delay, the electrical

signal is conducted through the left and right bundle of His to the respective Purkinje

fibers for each side of the heart, as well as to the endocardium at the apex of the heart,

then finally to the ventricular epicardium; causing its contraction.

Several methods have been proposed to model the action potential dynamics, as shown

in Fig. 3.1, with the trade off between complexity, accuracy and computational cost.

Biophysical models, for example, are very detailed models considering the microscopic

level ionic interactions within the cardiac cell and through cell membranes, and there-

fore, contains large number of parameters. Eikonal models, on the other hand, is a

macroscopic model focusing only on the electrical wavefront and cannot model TMP

propagation. Phenomenological models include details in between these two types of

modeling and are computationally attractive. Considering the balance between model

plausibility and computational feasibility, in this proposal, we choose the Aliev-Panfilov
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model [2] described by two differential equations.

∂u

∂t
= ∇(D∇u) + ku(u− 1)(u− a)− uv,

∂v

∂t
= −ε(u, v)(v + ku(u− a− 1)) (3.1)

where u is the transmembrane potential, v is the vector of recovery current, D is the

diffusion tensor, k controls the repolarization, and a controls the excitability of the cells.

These equations can be numerically solved over the discrete mesh of the ventricles as

described in [109] to arrive at:

∂u

∂t
= −M−1Ku + g1(u,v),

∂v

∂t
= g2(u,v) (3.2)

Matrices M and K encode the 3-D myocardial structure and its conductive anisotropy.

We use this model as a prior knowledge about the cardiac electrophysiological signals.

3.1.2 Electrocardiography

The cardiac electrical activity produces an electric field around it. The electric poten-

tial can be measured on the body surface as electrocardiogram (ECG); the process is

called electrocardiography (EKG). Classical ECG recording systems consisted of three

electrodes on the left arm, right arm and left leg, from which three limb voltages VI , VII

and VIII are calculated. This system was modified to an extended, and more popu-

lar, version called 12 lead ECG consisting of six limb recordings and six precordial

recordings.

For the purpose of inferring electrophysiological signals, we need denser ECG signals.

Therefore, we use a high density body surface potential maps (BSPM)s. BSPMs use

tens to hundreds of ECG electrodes. In our case, we use 120 lead BSPM (also called

120 lead ECG). Fig. 3.3 shows a schematic of a normal ECG signal of a single lead. It

consists of following main segments: 1) P wave, 2) PR segment, 3) QRS complex, 4)

ST segment, and 5) T wave. The P wave corresponds to the atrial depolarization, PR

segment to the propagation of the activation through AV node and the Purkinje fiber,
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Figure 3.3: Schematic diagram of ECG signal

.

QRS complex to the depolarization of the ventricles, ST segment to the stage when

all the myocytes are at the plateau and all regions in the ventricles are at depolarized

state, and T wave to the re-polarization of the ventricles.

3.1.3 Forward and Inverse Problem

To obtain quantitative relation between the cardiac electric sources and the BSP on the

body surface, we use quasi static approximation of the electromagnetic theory. Within

the volume of myocardium, Ωh, the bidomain theory [77] describes the distribution of

extracellular potential, yte as a result of the gradient of the action potential, u as:

∇((Di(r) + De(r))∇yte(r)) = ∇(−Di(r)∇u(r)) ∀r ∈ Ωh (3.3)

where r is the position vector corresponding to the spatial coordinate, Di and De are

intracellular and extracellular conductivity tensors, and their summation Dk = Di+De

is the bulk conductivity tensor. Within the region between the heart surface and the
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body surface, denoted by Ωt/h, we assume no source of electrical activation, hence we

have:

∇((Dt(r))∇yt(r)) = 0 ∀r ∈ Ωt/h (3.4)

where Dt is the torso conductivity tensor. For simplicity, we assume Dk and Dt to be

isotropic and only Di to be anisotropic; consequently, Dk and Dt become scalars σk

and σt respectively. Assuming isotropic and homogeneous conductivity, the forward

relationship between cardiac action potential and the body surface voltage data can

be described with following Poisson equation within the heart and Laplace equation

external to the heart:

σk∇2ytk(r) = ∇(−Di(r)∇u(r)) ∀r ∈ Ωh (3.5)

σt∇2yt(r) = 0 ∀r ∈ Ωt/h (3.6)

We solve eq. (3.5) and (3.6) with coupled meshfree and boundary element methods

(BEM) [108]. BEM gives us a linear biophysical relation on a subject specific heart-

torso model derived from tomographic images:

y(t) = Hu(t) (3.7)

where H is the transfer matrix specific to individual’s heart torso geometry and is

assumed time invariant for simplicity.

The inverse electrophysiological imaging refers to the problem of estimating u(t) time

sequence based on the information in BSP time sequence y(t). This is an ill posed

inverse problem. Several approaches have been proposed to solve this inverse problem

over the years.

3.2 Related Works

Noninvasive electrophysiological (EP) imaging aims at a mathematical reconstruction

of cardiac electrical sources from high density electrocardiogram (ECG) signals. To
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solve EP imaging, two types of sources models are used: 1) surface-based source models

where source is sought in the form of electrical potential on the epicardium and/or

endocardium [30,44,86], or activation time on the ventricular surface [52,96,104]; and

2) volumetric source model where the source is sought in the form of action potential

[49,50,79,109], or current density/activation front [65] throughout the myocardial wall.

Reconstructing surface sources is ill posed due to sparse measurement, attenuation and

smoothing of the electric field while reaching the torso surface. In addition to these

difficulties, the volumetric source reconstruction is plagued with additional issue of

non-unique solution, i.e. multiple sources give rise to same ECG recording [18] even

if all the previous mentioned problems were mitigated. In this sense, the seeking for

transmural electric source throughout the myocardium is even more ill-posed; and

therefore, surface source reconstruction can be thought as an implicit regularization.

The success of noninvasive EP imaging, therefore, largely relies on an effective incor-

poration of prior knowledge about the solutions via regularization techniques. Repre-

sentative constraints include the smoothness of the electrical potential in space and/or

time at different orders of derivatives, enforced through techniques such as Tikhonov

regularization [91], truncated SVD [81], and spatio-temporal regularization [17]. Other

constraints exploit sparsity of the cardiac signal in a certain domain, such as the gra-

dient domain, by utilizing L1 norm [41] or total variation [114] as the regularization

cost. Similar constraints on smoothness and sparsity can be incorporated within a

probabilistic formulation where they enter into the equation as the prior distribution

on the source signal. For example, Gaussian prior [95] is used for smoothness and total

variation prior for sparsity [115], while generalized Gaussian prior [87] adapts between

smoothness and sparsity.

Alternatively, model based regularization has been used to encode a priori physiological

knowledge about the electrical propagation inside the heart. Examples include step

jump functions [86] and logistic functions [104] to describe the activation of action

potential, and parameterized curves modeling the wavefront velocity as trigonometric

functions and the potential as a step response of a second order linear system [40].

When estimating transmural sources throughout the myocardium, 3D EP simulation
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models of the spatiotemporal propagation of action potential have been used to provide

dynamic constraints of the inverse problem [49,79,109].



PART I

PROBABILISTIC MODEL AND INFERENCE

28



Prologue to Part I

In part I, we try to look at the inverse solution methods based on probabilistic graphical

models and Bayesian inference. To improve generalization, we focus on integration of

several knowledge sources and adaptation of common prior. These are achieved by

modeling the error and modeling the prior in Chapters 4 and 5 respectively.

29



Chapter 4

Learning by Inferring Model Error

Knowledge rests not upon truth alone, but upon error also.

- Carl Jung

30
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4.1 Introduction

Since we are interested in inferring transmembrane potential throughout the my-

ocardium, we use volumetric source model as discussed before. To overcome ill-

posedness in solving inverse problem, Alieve-Panfilov model based simulation model

[109] can provide a general population knowledge about the behavior of cardiac elec-

trophysiological signals through the differential equations. We want to generalize this

knowledge to help in the inference of patient specific TMP. This requires addressing a

challenge: model parameters controlling the shape of transmembrane potential (TMP)

vary across the heart depending upon whether the underlying tissue is healthy or dis-

eased, and depending upon the origin of excitation of TMP, and are unknown a priori.

In the absence of prior knowledge about these parameters, common practice is to as-

sume values commonly used in literature, introducing errors in the models. Such model

inaccuracies and their effect on the inverse solution have been studied. Erem et al [30],

for example, used convex relaxation of the original problem to study how the solution

differs if the model assumption about a uniform TMP amplitude throughout the heart

is violated due to the presence of infarction, and Xu et al [115] investigated uncertainty

in the inverse solution due to model errors, and showed the importance of considering

the resulting solution uncertainty in addition to a point estimate. While these works

have highlighted the importance of acknowledging prior model errors in EP imaging,

addressing these errors remains a challenge.

Ideally, we would want to estimate patient specific parameters in the EP model in

addition to TMP. Since this task is very difficult, we take a slightly different approach

by estimating error introduced due to the error in parameters. In this chapter, we

present a probabilistic framework to allow principled estimation of the prior model error

while reconstructing transmural TMP under the constraint of the EP simulation model.

However, simultaneous estimation of both the error and TMP is still challenging, and

might require additional source of information to address it. To overcome this challenge,

we exploit the low-dimensional nature of cardiac wavefront propagation to formulate

a sparse representation for the model error. We then present a Bayesian inference

method to estimate the posterior distribution of transmural TMP and the sparse error
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of the prior EP model. Building upon our previous work [38], we provide a rigorous

treatment to the inference by explicitly introducing error random variable and jointly

inferring its posterior distribution. This enables proper estimation of model uncertainty

as a combination of propagated uncertainty from previous time and the estimated

uncertainty at the present time.

We evaluate the performance of the presented method on simulated and real data on

its ability to detect and correct model errors resulting from the presence of myocar-

dial infarction and unknown excitation points. We compare its performance with the

previously-described model-constrained approach to TMP reconstruction [109] that

does not consider errors in the a priori model. The main contributions of this paper

include:

1. We present a new probabilistic approach to EP imaging that is able to estimate

the error in the prior model by leveraging the sparsity of model errors.

2. We show that the presented method can detect and correct errors in prior model

predictions, improving the accuracy of the estimated TMP signals in the presence

of unknown infarction and excitation locations.

3. We provide theoretical and experimental analysis relating the performance of the

presented method to the interplay between ECG data and the singular value

decomposition of the forward matrix.

4. We relate the presented method to algorithms in machine learning community,

such as relevance vector machines (RVM) and Empirical Bayes, to provide further

insights into the nature of the solution.

This chapter includes parts from author’s journal and conference publications [37,38].
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Figure 4.1: Probabilistic graphical models of (a) ECG sequence and (b) ECG at a time

instant.

4.2 Probabilistic Formulation for EP Imaging

We represent the generation of ECG sequence by a probabilistic graphical model as

shown in Fig.4.1(a), where TMP uk is the latent random variable generating ECG

data through the linear measurement model, and the hidden state uk is related to

the previous state by the prior EP model (eq.3.2). Solving it numerically over time

provides:

uk = f(uk−1) (4.1)

where f denotes the routine for numerically solving eq.(3.2) and does not necessarily

have a closed form. Furthermore, to account for modeling errors in the prior model

given by eq.(4.1), we introduce a prediction error ηk through:

uk = f(uk−1) + ηk (4.2)
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While existing works often model ηk as a known Gaussian noise with a pre-defined

variance [109], we assume ηk to be unknown with a prior distribution parameterized by

θk. The joint posterior distribution of uk for all time instants is analytically intractable

because of the lack of closed form solution of eq.(4.1). Therefore, we sequentially

solve for the marginal probability density function (pdf) of uk for each time instant

given ECG data till present time, y1,..k. Since uk depends on previous ECG data

y1,..k−1 through uk−1 (see Fig.4.1(a)), given the posterior distribution of uk−1, uk is

independent of y1,..k−1. This brings us to the graphical model in Fig.4.1(b) for the

generation of ECG data at time instant k. Components of this graphical model are

detailed below:

Likelihood

ECG data yk is generated from TMP uk through the linear measurement model de-

scribed earlier considering a zero-mean Gaussian noise with variance β−1
k :

p(yk|uk, βk) = N (yk|Huk, β
−1
k I) (4.3)

where βk is modeled with the conjugate Gamma prior:

p(βk|c, d) =
dc

Γ(c)
β−1
k exp(−dβk) (4.4)

Conditional prior of uk

We model the prior of action potential uk conditioned on previous ECG data as well

as the prediction error ηk. Given the posterior distribution of action potential uk−1 at

the previous time instant, p(uk−1|β1...k−1,y1..k−1,θ1..k−1), we have:

p(uk|ηk, β1...k−1,y1..k−1,θ1..k−1) (4.5)

=

∫
p(uk|uk−1,ηk)p(uk−1|β1...k−1,y1..k−1,θ1..k−1)duk−1

where p(uk|uk−1,ηk) can be defined as N (uk|f(uk−1) + ηk,0) based on the prior EP

model in eq.(4.2). Because f is not in a closed form, the integral in eq.(4.5) cannot be
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solved analytically but has to be approximated numerically. To do so, we sample from

the posterior distribution of uk−1 and pass them through the physiological model f .

The mean ud and covariance Σd of f(uk−1) are then approximated from the output

samples. Let ωk be the Gaussian approximation of f(uk−1), i.e., ωk ∼ N (ωk|ud,Σd),

we have:

p(uk|ηk, β1...k−1,y1..k−1,θ1..k−1)

=

∫
N (uk|f(uk−1) + ηk,0)p(uk−1|β1...k−1,y1..k−1,θ1..k−1)duk−1

=

∫
N (uk|ωk + ηk,0)N (ωk|ud,Σd)dωk (4.6)

= N (uk|ud + ηk,Σd) (4.7)

where eq.(4.6) uses the law of unconscious statistician (LOTUS) about the transfor-

mation of random variables :
∫
g(f(u))p(u)du =

∫
g(ω)p(ω)dω if ω = f(u).

Error model

Finally, we model the prediction error ηk with a prior distribution p(ηk|θk). Because

we model ηk independently for each time instant, below we drop k from the formulation

for the sake of simplicity.

To model η, we exploit its low-dimensional structure by considering the physiological

phenomenon that TMP wavefront (which can be thought as spatial gradient of TMP)

is spatially localized. It is therefore reasonable to assume the spatial gradient vector

of uk to be sparse with a lot of zeros, as illustrated in the examples in Fig. 4.2. At

any time instant, the difference between the gradient of true TMP and that predicted

by an erroneous model would capture the difference in their wavefronts, which would

be localized in space and can be reasonably approximated by a sparse representation.

This is demonstrated in Fig. 4.2, where the actual wavefront (left column) is delayed

by the annotated infarct region when moving from the apex towards the base of the

ventricles. In comparison, propagation produced by a prediction model unaware of

the infarct (middle column) does not exhibit this delay. The difference between these
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two wavefront, computed as the difference of TMP gradient, is also sparse (spatially

localized) at any time instant as illustrated in the last column of Fig. 4.2.

One common practice to enforce sparsity is to use L1 penalty and correspondingly

laplacian prior distribution. More recently, Lp norm (0 ≤ p < 1) 1 has been used

to generate sparse solutions [19, 27] in compressed sensing. Both of these cases can

be incorporated within a single framework of Generalized normal distribution with Lp

norm in the exponent:

pgn(η|α) =
( p

2αΓ(1/p)

)n
exp

(
−
(‖Dη‖p

α

)p)
(4.8)

where α is the hyperparameter and D is the 3D spatial gradient operator. As we

decrease p from 2 towards 0, the tail of this distribution gets heavier encouraging

sparser solutions. One key difficulty in calculating the posterior distribution using

generalized normal prior is the presence of the Lp norm in exponent of eq.(4.8). Hence,

to perform principled inference, we derive a variational lower-bound of eq.(4.8) below.

Theorem 1. Let x = (x1, x2, ...xn) be a vector with independent components each

following a generalized normal distribution with the same parameters α and p, with a

joint pdf: p(x|α) =
(

p
2αΓ(1/p)

)n
exp

(
−
(
‖x‖p
α

)p)
.

Then, p(x|α) = sup
λ>0

C
αn

exp
(
−xTΛx

2
− 2−p

2
(α

2

p
)

p
p−2
∑

i λ
p
p−2

i

)
where C = ( p

2αΓ(1/p)
)n and Λ = diag(λ)

The proof of Theorem 1 is provided in the Appendix. It makes use of the Fenchel-

Lagrange duality and uses conjugate of a convex function to derive a variational lower

bound. Fig.4.3 illustrates the crux of Theorem 1: the red curve represents a function

with the negative of Lp norm, raised to the pth power, in the exponent – the generalized

normal distribution is composed of such functions in each component. This function is

lowerbounded by functions with a negative quadratic term (like Gaussian) in the expo-

nent. So, essentially we have replaced a complicated function with a family of simpler

1Lp norm is not a norm for (0 ≤ p < 1) in strict sense because it does not satisfy the triangle

inequality which is easy to verify noting non-convexity of unit ball in Lp space. Here, we refer to it

as a norm for the sake of convenience.
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Figure 4.2: Spatial gradient of true and predicted TMP and their difference.

Figure 4.3: At each point x, and fixed p, there exists a lowerbounding Gaussian-like

function that tangentially touches exp(−|x|p).

lower bounding functions. Obviously, it comes with the additional set of variational

parameters, each corresponding to one Gaussian-like function. However, the advantage

of this formulation is that, conditioned on fixed variational parameter, the function is

Gaussian (multiplied by some constant). This brings forth the tractability of Gaussian

distributions and the consequent computational advantage during the development of

the inference algorithm that will be elaborated in section III-B.
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Setting x = Dη in Theorem 1, we obtain,

pgn(η|α) = sup
λ>0

C
αn

exp
(
− uTDTΛDu

2
− 2−p

2
(α

2

p
)

p
p−2
∑

i λ
p
p−2

i

)
(4.9)

Dropping the supremum in eq.(4.9) gives us a lower bound for the generalized normal

distribution for any λ. This lower bound is used as the prior distribution of η, p(η|θ),

treating λ as a variational parameter to be optimized during the inference.

p(η|θ) =
C

αn
exp(−η

TDTΛDη

2
− 2− p

2
(
α2

p
)

p
p−2

∑
i

λ
p
p−2

i ) (4.10)

where θ = {α,λ}.

By definition, the gradient operator D has a null space: a vector containing all ones

(say 1). Using this D thus will fail to correct the constant bias in TMP. To address

this issue, we augment D with one more row of all ones, i.e. D =
(
DT ,1

)T
.

4.3 Joint inference of transmural TMP and predic-

tion errors

As the inference is iteratively carried out for each time instant, we drop k from equations

for simplicity. Given the probabilistic formulation described in the previous section,

we have the following joint pdf of interest:

p(y,u,η, β|ud,Σd, θ, c, d) =

p(y|u, β)p(u|η,ud,Σd)p(η|θ)p(β|c, d) (4.11)

We make notation uncluttered by writing this distribution as p(y,u,η, β|θ) where

ud,Σd, c, d are understood as given. We are interested in jointly estimating the random

variables u,η, β as well as parameter θ = {λ, α}. We propose to do this in two steps.

First, we estimate the parameter θ as the maximum likelihood estimate by integrating
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out the variables u,η, β, i.e.,

θ̂ = argmax
θ

p(y|θ), (4.12)

where p(y|θ) =

∫
p(y,u,η, β|θ)dudηdβ

Once we obtain the optimum θ̂, we then compute posterior distribution p(u, η, β|y, θ̂).

However, eq.(4.12) is difficult to solve due to the need to integrate out the random

variables u,η and β. We therefore present an iterative procedure which yields us both

the optimum θ̂ and p(u, η, β|y, θ̂).

We decompose log p(y|θ) as:

log p(y|θ) = L(q,θ) +KL(q||p) (4.13)

where L(q, θ) =

∫
q(u,η, β) log(

p(y,u,η, β|θ)

q(u,η, β)
) (4.14)

KL(q||p) =

∫
q(u,η, β) log(

q(u,η, β)

p(u,η, β|y,θ)
) (4.15)

Since Kullback-Leibler divergenceKL(q||p) between q and p(u,η, β|y,θ) is non-negative,

L is the lowerbound of log p(y|θ) with the gap given by KL(q||p). To maximize

log p(y|θ), we can thus minimize the KL divergence gap KL(q||p) and maximize the

lowerbound L. We achieve this by two alternating optimization: i) Posterior ap-

proximation where we fix θ and minimize KL by making q as close to true posterior

p(u,η, β|y,θ) as possible via Variational Bayes, and ii) Parameter optimization, where

we fix q and maximize the lowerbound L with respect to θ. This style of alterna-

tively estimating parameter and posterior distribution of hidden variable is known as

expectation maximization (EM).

Posterior approximation of u,η, β: Given the estimate at previous iteration, θold =

{λold, αold} , true posterior distribution is:

p(u,η, β|y,θold) ∝ p(y|β,u)p(u|η)p(η|λold, αold)p(β) (4.16)

Note that, through the variational lower-bound p(η|θ) derived in Theorem 1, p(η|λold, αold)
becomes Gaussian when conditioned on known values of λold and αold. In another word,
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by combining Theorem 1 and the EM algorithm, we are able to replace a complex dis-

tribution (Lp norm in the exponent) with a Guassian distribution and greatly simplify

calculation of the posterior distribution (and its approximation).

The approximated joint distribution q(u,η, β) is obtained using Variational Bayes with

mean field approximation: q(u,η, β) = q(u,η)q(β). Note that we only assume the

independence to exist between β and (η,u), not between η and u since the action

potential and model error is closely related. From eq.(4.16), Variational Bayes yields:

log q(u,η) = Eq(β)[log[p(y|β,u)p(u|η)p(η|λold, αold)]] + c

= −1

2
[Eq(β)[β](y−Hu)T (y−Hu) + ηTDTΛoldDη

+ (u− ud − η)TΣd
−1(u− ud − η)] + c

q(u,η) = C exp(−1

2
[β̄(y−Hu)T (y−Hu) (4.17)

+ (u− ud − η)TΣd
−1(u− ud − η) + ηTDTΛoldDη]) (4.18)

where β̄ = Eq(β)[β] and q(u,η) is jointly Gaussian. Marginal distributions q(u) and

q(η) can then be analytically derived:

q(u) = N (u|ū,Σu)

where Σ−1
u = βHTH + (Σd + Λ−1

old)
−1, ū = Σu(βHTy + (Σd + Λ−1

old)
−1ud).

q(η) = N (η|η̄,Ση)

where Σ−1
η = DTΛoldD + HT (β−1

oldI + HΣdH
T )−1H, η̄ = ΣηH

T (β−1
oldI + HΣdH

T )−1(y−
Hud).

Using Variational Bayes, q(β) can be calculated as,

log q(β) = Eq(u,η)[log[p(y|β,u)p(β)]] + c (4.19)

= −β[d+
1

2
Eq(u,η)[(y−Hu)T (y−Hu)]

+ (c− 1 +
m

2
)log[β] + c (4.20)
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q(β) = Gamma(c+
m

2
, d+

1

2
Eq(u)[(y−Hu)T (y−Hu))

β̄ =
m+ 2c

2d+ ‖y−Hū‖2 + tr(ΣuH
TH)

(4.21)

Parameter optimization: Fixing the posterior approximation q obtained from the previ-

ous step, maximization of L in eq.(4.14) is equivalent to maximization of Eq(u,η,β)[log p(y,u,η, β|θ)]

with respect to θ. In log p(y,u,η, β|θ), the only term depending on θ is log (p(η|θ)). In

taking expectation of this term, we can marginalize out u, β, leaving the optimization

of Eq(η) [log (p(η|θ))] which is achieved by equating its first derivative to zero:

∂

∂θ

(
Eq(η) [log (p(η|θ))]

)
= 0 (4.22)

The details of derivations are in appendix B. The complete algorithm is summarized

in Algorithm 1.

Limiting case of p Choosing p close to zero makes our prior sparser which we expect

to work better. Fortunately, we can derive the limiting case expression for p → 0 in

Algorithm 1:

If p→ 0 then s→ 1, λi →
1

tr([η̄η̄T + Ση]did
T
i )

(4.23)

We report results using Algorithm 1 with this limiting case in all experiments unless

stated otherwise. The effect of different values of p is investigated in section 4.7.

Upon convergence, q(u) provides the posterior distribution of TMP at the current time

instant, k. It will then be used to predict the prior distribution of TMP at the next

time instant, k + 1, as described in the previous section.

4.4 Reducing Computational Cost

A main computational cost of the presented method comes from the inversion of matri-

ces listed in steps 8-10 in Algorithm 1. In specific, let H ∈M ×N where M ∼ 120 and
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Algorithm 1 Data Corrected Posterior Distribution Algorithm

1: procedure Data Corrected Posterior(ud,Σd)

2: Initialize p, c, d, λ, β, λthreshold

3: m=no. of rows in H

4: n=no. of rows in D

5: D =

(
D

1T

)
6: while r < maxIteration & ū does not converge do

7: Λ = diag(λ)

8: Pu = (Σd + (DTΛD)−1)−1

9: Σu = (βHTH + Pu)
−1

10: ū = Σu(βHTy + Puud)

11: Pη = (β−1I + HΣdH
T )−1

12: Ση = (DTΛD + HTPηH)−1

13: η̄ = ΣηH
TPη(y−Hud)

14: s = N/(
∑

i λ
p
p−2

i )

15: for i in 1 to n do

16: λi =
(

s
tr([η̄η̄T+Ση ]did

T
i )

) 2−p
2

17: end for

18: λn+1=max(λthreshold,max(λ1:n))

19: β = m+2c−1
2d+‖y−Hū‖2+tr(ΣuHTH)

20: end while

21: return ū, Σu . Posterior mean and covariance

22: end procedure
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Figure 4.4: Comparison of TMP propagation sequences between simulated ground

truth and reconstructions with and without model error correction. Scar region has

been delineated with black contour.

N ∼ 2000; steps 8-10 require three inversions of matrices of size N×N . To reduce this

cost, we rearrange equations in those steps and equivalently invert M ×M matrices

instead of N ×N :

Σu = (βHTH + Σp
−1)−1

= Σp −ΣpH
T (HΣpH

T + β−1I)−1HΣp (4.24)

ū = Σu(βHTy + Σp
−1ud)

= ΣpH
T (HΣpH

T + β−1I)−1y + (βΣpH
TH + I)−1ud (4.25)

where Σp = Σd + (DTΛD)−1.

Proof. Proof is in Appendix C.

Using this reformulation we reduced the computational time by ∼30% using Tesla

K20m GPU (5GB), 2.2 GHz processor and using matlab inbuilt functions supporting

GPU. As described earlier, we reduce cost by decreasing the number of inversion of

heavy matrices. Therefore, in a setup where matrix inversion is made very efficient



CHAPTER 4. LEARNING BY INFERRING MODEL ERROR 44

using GPU or alternative parallel architecture and/or low level programming language,

a smaller gain may be expected by this rearrangement.

4.5 Connection with Sparse Bayesian Learning

We note that the prior distribution on the model error (eq.(4.10)) is a variational

distribution with a quadratic term in the exponent. This is reminiscent of works in

sparse Bayesian learning (SBL), where a zero mean Gaussian prior with unknown

variance is used to enforce sparsity [102,112]. If we rearrange the presented error prior

in eq.(4.10) in the form of SBL, we will obtain:

p(η|θ) = pN(η|θ)psbl(θ) (4.26)

= N (0, (DTΛD)) exp(−Ψ(θ)) (4.27)

where,

Ψ(θ) = log
αn

Z
+

1

2
log |DTΛD|+ 2− p

2
(
α2

p
)

p
p−2

∑
i

λ
p
p−2

i (4.28)

In this form, the presented prior is similar to the SBL-variant presented in [111],

where the prior covariance is represented as a linear combination of basis matrices with

unknown weights modeled with a hyperprior. Here, the precision instead of covariance

matrix is expressed as a linear combination of basis matrices, with the basis matrices

being the outer product of the columns(di) of the gradient matrix DT , i.e. the precision

matrix is given by
∑n+1

i=1 λidid
T
i . This results naturally from assuming the gradient of

TMP (wavefront) to be sparse.

Parameter estimation for the additional row of D

As described earlier, we add one more row of ones to the matrix D, i.e., dn+1 =

1. Our inference procedure alternatingly estimates parameters and random variables.
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Parameters λis are estimated from the ECG through η (see line 16 of Algorithm 1).

Then η and u are updated according to λi (see line 8 through 13 in Algorithm 1).

The whole precision matrix, given by
∑n+1

i=1 λidid
T
i affects how much the inverse TMP

estimate (u) should adjust prediction of dynamic model (ud) according to ECG data

(y) (see line 10 of Algorithm 1). Intuitively, when the value of λidid
T
i is high, less

correction will occur for the i-th element in dTi u and the estimated value will be more

heavily determined by the model prediction. However, since the vector of ones, i.e. 1,

lies in the null space of the forward matrix H, the last λn+1 – corresponding to 1 added

to matrix D – cannot be estimated from the ECG during our inference. Therefore, we

heuristically set this λn+1 high such that when u is estimated, the bias 1Tu is only

minimally corrected with respect to prediction from previous time instant. This is

based on the assumption that initial u we start from has the bias (1Tu) approximately

correct and we maintain the bias in the same range throughout. This is a reasonable

assumption because 1) we are focusing on the error in the gradient of u, and 2) we do

not have any other source of information to learn this bias. Note that we want λn+1

to be sufficiently high but not too high so as to put heavy constraint on the inverse

estimate. To maintain a high value of λn+1, we always keep it above a threshold

λthreshold. Above this threshold, we set λn+1 to be max(λ(1 : n)). This helps in

gradually increasing λn+1 over the iteration as other values of λ increase and reaches

much high value than λthreshold.

4.6 Synthetic Experiment 1: Errors in Model Pa-

rameters

We first evaluate the ability of the presented method to detect and correct model errors

arising from model parameters that represent tissue properties. In specific, we consider

the presence of local myocardial infarcts unknown to the prior physiological model.

Experiments were carried out on three image-derived heart-torso models, including

34 settings of myocardial infarcts of various sizes and locations in the ventricles. In

specific, we divided each left ventricle into 17 segments according to the American
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Figure 4.5: Examples of variance plots. Left: spatial plot at one time instant. Right:

Temporal plot at selected locations.

Heart Association (AHA) recommendations [82], and set each infarct to two of the

17 segments. 120-lead ECG data was then simulated and corrupted with 20dB noise

for inverse reconstruction of 3D transmural TMP signals. The inverse reconstruction

utilized a prior EP model without knowledge of the presence of the infarct. From the

reconstructed TMP signals, activation time was calculated as the time of the steepest

upstroke and the region of infarct was extracted from where TMP signals have duration

below 50% of normal values. Quantitative accuracy of the solutions was evaluated using

two metrics: correlation coefficient between the true and reconstructed activation time,

and Dice coefficient between the true and estimated regions of infarcts. Using these

metrics, we also compared the performance of the presented method against model-

constrained EP reconstruction without correcting model errors as described in [109].

Figure 4.4 shows examples of the simulated and reconstructed TMP sequences. As

shown in the ground truth (bottow row), the TMP propagation was blocked at the

region of an infarct located at the basal infero-lateral region of the heart. Without

model error correction (top row), the reconstructed TMP sequence was not able to

reflect this conduction block until after the depolarization stage. In comparison, the
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Figure 4.6: Comparison of activation time reconstructed with and without model error

correction at different scar settings.

presented method (middle row) was able to detect and correct the prior model error

at an early stage of the depolarization, capturing the conduction block at the correct

location of the heart.

To better understand how model uncertainty helps in correcting the posterior estimate

of TMP, we note that, in line 10 of Algorithm 1, the prediction from the previous time

instant, ud is multiplied by the precision matrix Pu, i.e., the inverse of the covariance

matrix Σd + (DTΛD)−1. The covariance matrix is the sum of the propagated uncer-

tainty Σd from the previous step and model error (DTΛD)−1 estimated at this time

step, capturing true uncertainty in the model predicted TMP. We plot variances, diag-

onal elements of the covariance matrix, in Fig. 4.5. As shown, the presented method

detected high uncertainty (variance) in the predicted TMPs at the infarcted region,

but low uncertainty at the healthy region. Also note that the variance was particu-

larly high at the boundary of the infarct, which was a natural result of modeling the

prediction error to be sparse in the spatial gradient domain.

Fig. 4.6 shows additional examples of activation time maps derived from the recon-

structed TMP sequence, with and without model error correction, in comparison to
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Figure 4.7: a) Quantitative comparisons of reconstructions obtained with and without

error correction, at the presence of infarcts unknown to the prior model. b) Quanti-

tative comparisons when reconstructing septal and non-septal infarcts. Left: without

model error correction; Right: with model error correction

the simulated ground truth. As shown, at the presence of infarcts at different locations

of the heart, the presented method was able to more closely reconstruct the conduction

block despite the absence of knowledge about these infarcts in the prior EP model.

Fig. 4.7 summarize the quantitative comparison between the results obtained with and

without model error correction. As shown in Fig. 4.7.a., accuracy of the presented

method – in both activation time and infarct detection – is significantly higher than

that without error correction. Noting the high standard deviation of the presented

results in Fig. 4.7.a., we further compare the performance (Dice coefficient) of the

methods regarding whether the infarcts were septal. As shown in Fig.4.7.b., 1) in both

methods, the performance was poor when the infarct is septal, and 2) the correction

of model error brought a significant improvement in accuracy when the infarct was

non-septal. This suggests that the ability to reconstruct septal information in the

heart may be fundamentally limited by its observability in surface ECG data, while

for cases where this observability is not an issue, the presented method performs well.

We further analyze the sensitivity of algorithm on infarct settings in greater detail in

section 4.10.
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Figure 4.8: Sensitivity of the presented algorithm with respect to different values of p

in the generalized Gaussian prior

4.7 Sensitivity Analysis

Sensitivity to the value of p

The generalized normal distribution would enforce sparsity for values 0 ≤ p ≤ 1. We

performed analysis on a single geometry to understand the sensitivity of the presented

algorithm to different values of p ranging between 0 and 2. As shown in Fig. 4.8, with

any value of p within the range of 0 ≤ p ≤ 1, the presented method performed better

than that did not consider model error correction. However, contrary to expectation,

the performance of the presented method did not improve as we decreased p from 1

to 0. In fact, the presented method performed better when p = 1 in comparison to

0 < p < 1, although the best was obtained at the limiting case p→ 0 as derived before.

We report results using this limiting case of the algorithm throughout this paper.
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Figure 4.9: Sensitivity of the presented algorithm with respect to different weighting

factors of the added vector of ones to the gradient matrix D.

Sensitivity to the added vector in D

As described in subsection 4.5, to preserve a bias term that is applicable to the prior

electrophysiological model, we added one row of ones to the gradient operator D and

heuristically updated the corresponding λn+1. The vector of ones and updating heuris-

tic of λn+1 was empirically found to work well. To understand the effect of this strategy

on the presented algorithm, we investigated two scenarios. First, we replaced the vec-

tor of ones with different weighting factors while keeping the value of λn+1 fixed. The

performance of the presented algorithm is summarized in Fig. 4.9(a). As shown, the

performance dropped when the weighting factor was either higher or lower than one,

although the drop was much more significant if the weighting factor was less than one.

This is because a high weighting factor imposes too high a bias constraint and does

not allow much change to TMP in accordance to ECG, while a low weighting imposes

a weak bias constraint which may allow the TMP solution to wander beyond a feasible

range. The latter causes a much bigger problem because, once the value of TMP goes

beyond the range feasible for the prior electrophysiological model, the model prediction

becomes unstable and may even crash.

We then tested the second scenario where we adjusted λn+1 accordingly when multi-

plying the row of ones with a weighting factor. As summarized in Fig. 4.9(b), with
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simultaneous adjustment of λn+1 following the strategy adopted in the presented algo-

rithm, the performance remained more or less unchanged over the range of weighting

factors tested.

4.8 Synthetic Experiments 2: Errors in Initial Con-

ditions

We then evaluate the ability of the presented method to detect and correct model errors

arising from the initial condition of the prior EP model – locations of the earliest

excitation points in the ventricles. In each of the three patient-specific geometrical

models, we considered the following error settings: 1) the prior EP model missed

one excitation point from the ground truth, 2) the prior EP model included an extra

excitation point not in the ground truth, and 3) the excitation point in the prior

EP model was at a different location from the ground truth. In all cases, 120-lead

ECG data was simulated and corrupted with 20dB noise for TMP reconstruction.

Quantitative accuracy of the reconstructed TMP sequence in comparison to the ground

truth was measured by two metrics: 1) normalized mean square error, and 2) correlation

coefficient.

Fig. 4.10 shows an example of the reconstructed and simulated TMP sequence where

the simulated TMP started from two excitation points while the TMP reconstruction

was constrained by a prior EP model starting with only one of the excitation points.

While the reconstructed TMP was unable to capture the missing excitation point

without model error correction, the presented method was able to quickly correct that

error 20ms into the depolarization. In comparison, as shown in Fig. 4.11, we found

that it was more difficult for both methods to correct an extra excitation point that

was not in the ground truth. Quantitative comparison between the two methods is

summarized in Fig. 4.12, showing a statistically significant improvement brought by

the presented method.
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Figure 4.10: Reconstructed versus true TMP propagation when the prior model missed

one of the two excitation points.

Figure 4.11: Reconstructed versus true TMP propagation when the prior model in-

cluded an extra excitation point absent in the ground truth.

4.9 Real Data experiments

We performed real data experiments on two patients who underwent catheter ablation
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Figure 4.12: Quantitative comparisons of reconstructions obtained with and without

model error correction, at the presence of model errors in excitation points.

Table 4.1: Dice Coefficients between infarcted regions extracted from reconstructed

TMP and bipolar voltage maps.

Case 1 Case 2

Without Model Error Correction 0.2406 0.1053

With Model Error Correction 0.3053 0.2237

due to post-infarction ventricular arrhythmia [92]. For each patient, patient-specific

heart-torso geometry was extracted from CT images, on which transmural TMP signals

were reconstructed from 120-lead ECG data acquired during sinus rhythm. From the

reconstructed TMP signals, the region of infarct was identified as where the duration

of TMP falls below 50% of the normal value. The obtained region of infarct was

compared with in-vivo bipolar voltage maps, and reconstructions obtained with and

without model error correction were compared.

These results are visually summarized in Fig. 6.6 and quantitatively summarized in
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Figure 4.13: Regions of infarcts extracted from reconstructed TMP sequences in refer-

ence to in-vivo bipolar voltage maps.

Table 4.1 in terms of the Dice coefficient between the detected infarct region and the

low-voltage region (≤ 1.5 mV) in bipolar voltage maps. In case 1, infarct reconstructed

considering model error (third column) is visually closer to the bipolar voltage map

registered to the CT-derived mesh. In case 2, both reconstructions were visually less

consistent with the bipolar voltage map. The Dice coefficients in Table 4.1 suggests that

both methods performed less satisfactorily in case 2, although the presented method

was able to bring evident improvement in both cases.

We noted that the improvement in inverse reconstructions brought by the presented

method was not as significant in real data as it was in simulated data. This might

be attributed to several reasons. First, the forward matrix H was treated as known

in simulated experiments while, in real-data experiments, the accuracy of inverse re-

constructions is directly affected by the errors in the forward matrix itself. Second, if

the error between the true TMP propagation and that from the prior EP model is too
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high, the assumption of sparse model error might not hold. This error can come from

multiple sources. For example, realistic infarcts may have much more complex spatial

distributions than the simple-shaped infarcts used in simulated experiments. The num-

ber and location of excitation points are also less predictable in real-data experiments

in comparison to simulated settings. Third, the correspondence of bipolar voltage to

the reconstructed TMP sequence is not straightforward. As a result, we resorted to

a secondary comparison where we identified infarcts from both data for comparison.

These intermediate steps might be another source of errors. Finally, the registration

of the bipolar voltage map to CT-derived mesh may introduce additional errors that

further compounded the validation process.

4.10 Discussion

4.10.1 Algorithm Performance vs. Error Observability

As observed in section IV-A, the performance of the presented method changes with

the location of the infarct. If we decompose the observed ECG for each case into the

following two components: yk = H(uprediction + η) = yprediction + yη, it is clear that

— given the same dynamic prediction model unaware of any infarct settings — the

difference in ECG data from different infarct settings are introduced by the model

error ηηη. Therefore, here we attempt to rationalize how the observation of error ηηη on

ECG might be related to the quality of the estimation results. To do so, we revisit the

approach for maximum-likelihood estimation of parameter θ derived in eq.(4.12), and

reformulate it to focus on the error observation in ECG yη (rather than the overall

ECG observation y used in eq. (4.12).

Consider that η is observed on the surface ECG data as the data error yη = Hη,

we have p(yη|η, β) = N (yη|Hη, β−1I), where the prior density of η is characterized

by hyperparameters λ and α as defined in eq.(4.27) and eq.(4.28). As mentioned in

section 4.3, our optimization scheme is to first obtain a parameter that maximizes the
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likelihood of y after marginalizing over intermediate random variables. Following the

same line of derivation, we marginalize over η to obtain yη as a Gaussian distribution

characterized by λ and α as p(yη|Λ, β) = N (yη|0,Σyη), where:

Σyη = β−1I + H(DTΛD)−1HT (4.29)

Note that marginalization over η is now possible because unlike before, where we also

had another latent variable u, now we only have η as latent variable. We obtain

parameter estimation equations as

λ̂, α̂ = argmax
λ,α

log[p(yη|Λ, β)p(λ, α)]

= argmin
λ,α

[yTηΣ−1
yη

yη + log |Σyη |+ 2Ψ(λ, α)] (4.30)

Now, we want to understand how this optimization leads to better performance in

certain error cases than others. Note that we want to analyze difference in performance

with respect to ECG error yη. In estimating optimal λ̂, the only term that constrains λ

to fit ECG data error is the first term, yTηΣ−1
yη

yη, which we call data fitting constraint.

We decompose it into terms that do and do not depend on λ in following result.

Result 1. If H = USV T is the singular value decomposition, z = UTyη, and 〈., .〉
denotes inner product, then,

yTηΣ−1
yη
yη = βyTηyη −

〈
zzT ,S(β−1V TDTΛDV + STS)−1ST

〉
Proof is in the appendix D.

Our argument here is that if there are multiple minima, then it would be difficult for

the algorithm to find the true minima. Let’s say λ∗, α∗ minimizes eq.(4.30) and let

yηΣ
−1
yη

yη = C∗ at this minima. Because only the second term in Result 1 depends on λ,

the data fitting constraint yηΣ
−1
yη

yη = C∗ is satisfied by all the λs such that the inner

product
〈
zzT ,S(β−1V TDTΛDV + STS)−1ST

〉
remains unchanged. Note that in this

inner product, zero elements in z will mask the matrix S(β−1V TDTΛDV +STS)−1ST

that contains λ. Therefore, if z is highly sparse, there will be a large number of λ

values that could satisfy data fitting constraint, and therefore would be the minimizer
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Figure 4.14: Values of |z|0 = |UTyη|0 versus Dice coefficient in three geometrical

models, where U is a matrix of left singular vectors in H.

Figure 4.15: Percentage of relevant vectors (columns in H that have a small angle with

the ECG error vector) in the reconstructed region of infarct.

of eq.(4.30), thereby increasing the feasible solution space. We use L0 norm of z,

denoted by |z|0 to quantify how dense the vector is. Above analysis suggests that a

lower value of |z|0 = |UTyη|0 – a small number of left eigenvectors of H present in yη –

may correspond to a higher difficulty to find the true optimum. Note that a lower value

of |z|0 is only sufficient to ensure multiple minima, but is not necessary because, even

if z is not sparse at all, the inner product might be small depending on the alignment

of two matrices.

To test this hypothesis, we carried out experiments in various settings of infarcts con-
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sidered in section IV. In each case, we set the vector η to be one in the infarct and

zero elsewhere. We calculated yη = Hη and then plot |z|0 = |UTyη|0 against the Dice

coefficient of the solution obtained earlier. As shown in Fig. 4.14, we observed that

whenever |z|0 is low – for example below the threshold annotated in figure – the Dice

coefficient of the obtained results is also low. This is in agreement with our hypothesis.

Additionally, we found that most of the settings with septal infarcts had a low value

of |z|0, explaining the difficulty of reconstruction in these cases. For the cases where

|z|0 is high, however, the Dice coefficient is mixed. This result of mixed dice coefficient

for high |z|0 is also consistent with our argument above that the smaller value of |z|0
is only sufficient but not necessary. This is because from Result 1 higher value of |z|0
may also lead to smaller inner product depending on the two matrices. Thus, the

experimental results support our theory.

We do caution that the above tests were conducted with the following simplifications:

1) we assumed that the model error is either zero (in healthy region) or one (in infarcted

region), 2) we considered only one time instant, and 3) we assumed that the Dice coef-

ficient is a direct measure of the reconstruction accuracy. More rigorous experimental

testings may be devised in the future for the presented theoretical analysis.

4.10.2 Relation to Relevance Determination

We now examine the presented method from the perspective of relevance determination,

and lay out its similarity with and difference from relevance vector machines [102]. As

the matrix DTΛD in eq. (4.29) is approximately block diagonal, we re-express the

covariance matrix of the data error yη as: Σyη = β−1I+
∑

k HkA
−1
k HT

k where Ak is the

k-th block of DTΛD. Following the reasoning in [102], if data error yη is generated by

a Gaussian distribution, the empirical covariance yηy
T
η must be approximately equal to

the covariance Σyη . Therefore, if Ak were a 1×1 block (say ak), we would be estimating

ak such that β−1I +
∑

k hka
−1
k hTk matches the yηy

T
η . This would be the same as the

relevance vector machines [102] and automatic relevance determination [69], which

work by selecting relevant columns hk’s that are most closely aligned to the data
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vector while driving the rest a−1
k towards 0. Here, given the block matrices Aks that

couples the columns of H, we speculate that, instead of a single column, the presented

method is forced to choose a set of columns such that the covariance is close to the

data covariance. Consequently, only a portion of the columns in the solution will be

closely aligned to the data vector due to block selection.

To experimentally examine this mechanism of block selection, we carried out experi-

ments in a setting similar to that described in the previous subsection. In each experi-

ment, We computed the angle between each column in H and yη, focusing particularly

on those columns with small angles to yη (i.e., relevant vectors). Fig. 4.15 shows the

percentage of small-angle columns out of all columns in the reconstructed infarct, plot-

ted against the Dice coefficient. We note that having a higher percentage of relevant

vectors in the solution was related to higher Dice coefficients, suggesting the nature of

relevance determination in the presented method. At the same time, we also note that

the percentage of relevant vectors remains moderate even when the Dice coefficient is

high, supporting our speculation of block selection.

4.10.3 Limitations and Future Work

We observed limited performance of the presented method in real data experiments.

Compared to synthetic experiments where the prior model error was controlled to one

source, model errors in real data experiments can arise from multiple sources, such as

the error in the prior dynamic model, and the error in the forward measurement model

that relates the TMP in the heart to ECG data on the body surface. Investigation

of methods that can detect and correct errors in the forward measurement model is an

interesting direction of future work, such as those presented in [29].

We may need to consider additional prior knowledge about the error or better model

error, for example, by considering temporal correlation. Future work may also consider

an alternative approach to incorporate prior physiological knowledge, for example,

through a data-learnt generative model extracting knowledge from physiological models

but with latent factors that can be more easily adapted to ECG data while retaining
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complex relationship [32].

With an interest in understanding why the presented method performs differently in

different cases, we presented mathematical justifications and initial empirical support

that the performance of the presented method is related to how the model error is

observed on ECG data. We hope that this result will encourage researchers in inverse

electrophysiological imaging to look closely into the relatively unexplored area of how

and why a new reconstruction method performs differently in different pathological

conditions. This also raises an open question: can we devise reconstruction methods

for electrophysiological imaging that are less sensitive (in terms of performance) to the

particular type of clinical application of interest?

Finally, the presented method performs inference sequentially using only past ECG

data. This is largely limited by the nature of the prior EP model as it is not possible

to reverse the model in time. This further suggests alternatives means to extracting

knowledge from the EP models without explicitly utilizing these models within the

inference.

4.11 Conclusions

We presented a Bayesian framework to jointly infer from ECG data the posterior distri-

bution of TMP signals and the error in the prior EP model, exploiting the sparse nature

of error in the gradient domain. We have shown that by considering and correcting

the error in the prior model, we can improve TMP reconstruction. Future work will

focus on alternative means to incorporating prior physiological knowledge such that

the model elements to be estimated from ECG data is more expressive in generating

the TMP sequence.
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4.12 Summary and Answers to Research Questions

We observed that we could improve generalization by incorporating the prior knowledge

about the spatio-temporal dynamics of TMP as well as knowledge of sparsity in the

gradient domain. However, there were some challenges in realizing this idea. To answer

the challenges we posed these two questions:

Q. 1.a) How can the population knowledge be adapted for patient specific

inference?

Q. 1.b) How can the prior knowledge about the sparsity in the gradient

domain and dynamics of TMP signals be combined in principled way?

In this chapter, we answered both of these questions by introducing an error random

variable in the graphical model and solving for the joint distribution of the inverse

signal and the error via clever combination of variational Bayes and expectation max-

imization. With this modeling and inference, we showed that the inverse estimate has

good generalization abilities in different settings of synthetic and real data experiments.

At the end of the chapter, we also investigated that there is certain inductive bias in the

algorithm because of assumptions (for example sparsity) and modeling of the solution.

Therefore, the solution works better in certain situations than others.



Chapter 5

Learning by Adapting Deep

Generative Model

How is it we have so much information, but know so little?

- Noam Chomsky
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5.1 Introduction

To solve the inverse problem of estimating patient specific TMP from ECG data, we

want to generalize the prior knowledge about the dynamics of TMP. To do so, we

employ a model constrained inference framework where the dynamics of TMP is rep-

resented in the form of EP simulation model based on differential equations. But,

these models are controlled by high-dimensional parameters often associated with lo-

cal tissue properties and the origin of electrical activation that are unknown a priori.

To fix these model parameters in optimization/inference, as is common in existing ap-

proaches, model errors may be introduced decreasing the accuracy of the estimated

electrical activity [109]. To adapt these model parameters to the observed data, as

is desired for accurate inference, is however difficult due to their high-dimensionality

and nonlinear relationship with the observed ECG data [38]. In the last chapter we

focused on estimating errors introduced in the model due to error in parameters. In

this chapter, we take a different approach; replace the conventional physiological mod-

els with a deep generative model that is trained to generate the spatiotemporal dy-

namics of transmembrane potential (TMP) from a low-dimensional set of generative

factors. These generative factors can be viewed as a low-dimensional abstraction of

the high-dimensional physical parameters, which allows us to efficiently adapt the prior

physiological knowledge to the observed ECG data (through inference of the generative

factors) for an improved reconstruction of TMP dynamics.

In specific, the presented method consists of two novel contributions. First, to obtain

a generative model that is sufficiently expressive to reproduce the temporal sequence

of 3D spatial TMP distributions, we adopt a novel sequence-to-sequence variational

auto-encoder (VAE) [16] with cascaded long short-term memory (LSTM) networks.

This VAE is trained on a large database of simulated TMP dynamics originating from

various myocardial locations and with a wide range of local tissue properties. Sec-

ond, once trained, the VAE decoder describes the likelihood of the TMP conditioned

on a low-dimensional set of generative factors, while the encoder learns the posterior

distributions of the generative factors conditioned on the training data. We utilize

these two components within the Bayesian inference, and present a variation of the
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expectation-maximization (EM) algorithm to jointly estimate the generative factors

and transmural TMP signals from observed ECG data. In a set of synthetic and

real-data experiments, we demonstrate that the presented method is able to improve

the accuracy of transmural EP imaging in comparison to statistical inference either

constrained by a conventional physiological model [109] or without physiological con-

straints.

This chapter includes parts from author’s conference publications [32,39].

5.2 Generative Modeling of TMP via Sequential

VAE

To learn to generate the spatiotemporal TMP sequences, we use a sequential variation

of VAE [58] based on the use of LSTM networks [16].

5.2.1 VAE Architecture:

The architecture of the sequential VAE is summarized in the red block in Fig. 5.1.

Both the encoder and the decoder consists of two layers of LSTM, where the second

layer includes separate mean and variance networks. The spatial dimension decreases

from the original TMP signal U to the latent representation Z, while the temporal

relationship is modeled by the LSTMs. Note that while the random variables in a

standard VAE are vectors, a sequential VAE deals with matrices. By defining the

conditional distribution of a matrix as the product of distributions over its columns, we

obtained the likelihood distribution pθ(U|Z) and the variational posterior distribution

qφ(Z|U) as:

pθ(U|Z) =
∏
k

N (U:,k|Mθ(Z):,k, diag(Sθ(Z):,k)) (5.1)
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Figure 5.1: Red block: VAE architecture. Green block: graphical model in inference.

qφ(Z|U) =
∏
k

N (Z:,k|Mφ(U):,k, diag(Sφ(U):,k)) (5.2)

where Mφ(U) and Sφ(U) are output from the mean and variance networks of the

encoder parameterized by φ, and Mθ(Z) and Sθ(Z) are output from the mean and

variance networks of the decoder parameterized by θ.

5.2.2 VAE Training:

Training of the VAE is performed by maximizing the variational lower bound on the

likelihood of the training data given as:

LELB(θ, φ; U(i)) = −KL(qφ(Z|U(i))||pθ(Z)) + Eqφ(Z|U(i))(log pθ(U
(i)|Z)) (5.3)

where pθ(Z) is an isotropic Gaussian prior. The calculation of the KL divergence and

cross entropy loss for the presented sequential architecture is carried out in a manner

similar to that described in [58]. The training data is generated by the Aliev-Panfilov

(AP) model [2], simulating spatiotemporal TMP sequences originated from different

ventricular locations with different tissue properties.
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5.3 Transmural EP Imaging

The biophysical relationship between cardiac TMP, U and body-surface ECG, Y can

be described by a a linear measurement model: Y = HU, where H is specific to the

heart-torso model of an individual. To estimate U from Y is severely ill-posed and

requires the regularization from additional knowledge about U.

5.3.1 Probabilistic Modeling of the Inverse Problem:

We formulate the inverse problem in the form of statistical inference. We define the

likelihood distribution of Y given U by assuming zero-mean measurement errors with

variance β−1:

p(Y|U, β) =
∏
k

N (Y:,k|HU:,k, β
−1I) (5.4)

To incorporate physiological knowledge about U, we model its prior distribution con-

ditioned on Z using the VAE decoder with trained parameter θ̄:

pθ̄(U|Z) =
∏
k

N (U:,k|Mθ̄(Z):,k, diag(Sθ̄(Z):,k)) (5.5)

To further utilize the knowledge about the generative factor Z learned by the VAE from

a large training dataset, we also utilize the VAE-encoded marginal posterior distribu-

tion of Z as its prior distribution in Bayesian inference. In specific, we approximate

samples from this marginalized distribution to be Gaussian:

p(Z) =
∏
k

N (Z:,k|Z̄ :,k, diag(C:,k)) (5.6)

With this, we complete the statistical formulation of our problem. Our goal is to

estimate the joint posterior distributions p(U,Z|Y) ∝ p(Y|U)p(U|Z)p(Z).
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5.3.2 Inference:

Due to the presence of a deep neural network, the posterior p(U,Z|Y) is analytically

intractable. To address this issue, we note that conditioned on Z, the distribution of U

is Gaussian in each column; thus, p(U|Y,Z) is analytically available. We leverage this

fact and employ a variant of the expectation maximization (EM) algorithm to obtain

the maximum a posteriori (MAP) estimate of Z along with the posterior distribution

of U given the MAP estimate of Z .

E-step: Conditioned on an estimated value of Z (say Ẑ), we calculate posterior of U

as p̂(U|Y, Ẑ) =
∏
kN (U:,k|Û :,k, Σ̂:,:,k), with the covariance and mean of the kth column

of U as:

Σ̂:,:,k = (βHTH + D−1
k )−1, Û :,k = Σ̂:,:,k(βHTY:,k + D−1

k mk) (5.7)

where Dk = diag(Sθ(Ẑ):,k), and mk = Mθ̄(Ẑ):,k and Sθ̄(Ẑ):,k are the kth column output

of the VAE decoder network when Ẑ is input to it.

M-step: Given p̂(U|Y, Ẑ), we update Z by maximizing Ep̂(U|Y,Ẑ) log(p(Y,U,Z))

L = E∏
kN (U:,k|Û :,k,Σ̂:,:,k)[log(pθ̄(U|Z))] + log(p(Z)) + constant (5.8)

Realizing that a complete optimization of L with respect to Z would be expensive, we

instead take a few gradient descent steps towards the optimum. The gradient of the

second term is analytically available. The gradient of the first term is calculated by

backpropagation through the decoder network.

The EM steps iterate until convergence, at which we obtain both the MAP value of Z

and the posterior distribution of U conditioned on Z and Y.

5.4 Synthetic Experiments:

Synthetic experiments are carried out on two image-derived human heart-torso models.

On each heart, the VAE is trained using around 850 simulated TMP signals consid-
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ering approximately 50 different origins of ventricular activation in combination with

17 different tissue property configurations. As an initial study, here we focus on tis-

sue properties representing local regions of myocardial scars with varying sizes and

locations.

The presented method incorporating the trained VAE model is then tested on simulated

120-lead ECG data from three different settings, each with 20 experiments. The three

settings include 1) presence of myocardial scar not included in training data, 2) origin

of ventricular activation different from those used in training, and 3) both myocardial

scar and activation origin not seen in training. In all experiments, the performance of

the presented method is compared to 0-order Tikhonov regularization with temporal

constraint (Greensite method) [44] and conventional EP model constrained inference

with fixed parameters [109].

The reconstruction accuracy is measured with three metrics: 1) normalized RMSE

given by the ratio of Frobenius norm of the error matrix to that of the truth TMP

matrix, 2) Euclidean distance between the reconstructed and true origins of ventricular

activation, and 3) Dice coefficient of the reconstructed S1 and true regions of scar S2 as

=2|S1∩S2|/(|S1|+ |S2|). In the two physiologically constrained methods, region of scar

is defined based on absence or delay of activation and shortening of action potential

duration; in Greensite method, since the reconstructed signal no longer preserves the

temporal shape of TMP, the region of scar is defined based on the peak amplitude of

the signal.

Computational cost: Training of the VAE takes approximately 40 hours on a 4 GB

Nvidia Quadro P1000 GPU. Generation of training data for each heart takes about 7

hours and inference around 30 minutes on Quadcore CPU.

TMP generation: Fig. 5.2 shows examples of local TMP signals generated by the

trained VAE decoder against TMP signals simulated by the AP model [2]. Note that,

when generating from a isotropic Gaussian (Fig. 5.2 right), noisy rather than mean-

ingful TMP signals may also be generated. In comparison, when sampling from the

approximated posterior distribution of Z as described in equation (5.6), the generated
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Figure 5.2: Examples of TMP signals generated by samples from two different distri-

butions: Left- marginalized posterior density encoded by the VAE ; Right- isotropic

Gaussian.

figures

Figure 5.3: Snapshots of early TMP pattern reconstructed by the three methods in

comparison to the ground truth. The origin of activation is noted on the left in each

row.

signals closely resemble the simulated TMP signals.

Imaging TMP from various origins: Fig. 5.3 shows a snapshot from the early

stage of ventricular activation reconstructed by the three methods in comparison to

the ground truth. Since the EP model constrained approach assumes general sinus-

rhythm activation, it introduces model error that incorrectly dominates the results.

The simple Greensite method, free from erroneous model assumption, actually does

a better job in comparison. By adapting model generative factors to the data, the

presented method demonstrates a significantly improved ability to reconstruct TMP

sequence resulting from unknown origins.
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Figure 5.4: Spatial distributions of scar tissues and temporal TMP signals obtained by

the three methods in comparison to the ground truth.

Imaging TMP at the presence of myocardial scar: Fig. 6.3 shows the spatial

distribution of scar tissue obtained by the three different methods, along with temporal

TMP signals reconstructed in healthy and scar regions, in comparison to the ground

truth. Without prior physiological knowledge, the Greensite method is not able to

preserve the temporal TMP shape, resulting in high RMSE error as shown in Table 1.

By thresholding the maximum amplitude of the reconstructed signals, the identified

region of scar has high false positives and resembles poorly with the ground truth.

The EP model constrained approach does a better job in retaining the temporal TMP

shape. However, without prior knowledge about the scar, the model error again affects

the accuracy of TMP reconstruction, especially in the early stage of activation when a

smaller amount of ECG data is available for correcting the model error. The presented

method, in comparison, is able to recognize the presence of scar tissue, adapting the

physiological constraint for improved TMP reconstructions and scar identifications.

Summary: Table 1 summarizes the quantitative comparison of the three methods

tested in the three settings as described earlier. Although the test cases were not seen

by the VAE during training, the proposed method shows a significant improvement

in inverse reconstruction (paired t-test, p<0.001) when compared with the other two

methods in all settings and metrics except with Euclidean distance using Greensite

method, where improvement is only marginal. It shows the importance of physiological

knowledge and its adaptation to observed data during model-constrained inference.
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Greensite EP constrained Proposed Method

Normalized RMSE 1.005± 0.006 0.3± 0.04 0.23± 0.05

Dice coefficient 0.19± 0.04 0.25± 0.09 0.52± 0.2

Greensite EP constrained Proposed Method

Normalized RMSE 1.001± 0.003 0.28± 0.05 0.11± 0.08

Euclidean Distance 18.5± 10.96 39.47± 6.3 14.37± 14.0

Greensite EP constrained Proposed Method

Normalized RMSE 1.005± 0.003 0.39± 0.03 0.29± 0.09

Dice coefficient 0.20± 0.07 0.21± 0.05 0.48± 0.24

Euclidean Distance 18.7± 9.3 65.5± 11.02 17.89± 10.6

Table 5.1: Quantitative accuracy of the three methods in three settings. Test data is

simulated with 1) Top: scar not in VAE training, 2) Middle: activation origin not

in training, 3) Bottom: both myocardial scar and activation origin not in training.

Figure 5.5: Real-data experiments: regions of scar tissues identified by the presented

method and conventional EP model constrained method, in comparison to bipolar

voltage data (red: scar core; green: scar border; purple: healthy tissue).

5.5 Real data Experiments:

Two case studies are performed on real-data from patients who underwent catheter

ablation due to scar-related ventricular arrhythmia. Spatiotemporal TMP is recon-

structed from 120-lead ECG data using the presented method and the EP model con-

strained method. In Fig. 5.5, scar regions (red regions with low voltage) identified
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from the reconstructed TMP are compared with scar regions (red regions) in the in-

vivo bipolar voltage data. In both cases, while the scar tissue identified by two methods

are generally in similar locations, the presented method shows less false positives and

higher qualitative consistency with bipolar voltage maps.

5.6 Study of Architecture in Learning Representa-

tion

To investigate the effect of different architecture choices in learning representation, we

experiment with three architectures: Language, svs and sss architecture. Language

architecture is of the same form as used in Language translation [100], and has deter-

ministic latent space. Other two architectures have stochastic latent vector as described

before. Fig. 5.6 shows a general architecture for a stochastic model at the bottom half.

As shown, both encoder and decoder has two layer LSTMs. Both, svs and sss are in

the stochastic setting where there are two networks for mean(M) and variance(S) while

the Language architecture does not have variance network. The major difference in

three architectures is explained in the top half of the Fig. 5.6. In the language model,

the output from last hidden unit of LSTM is directly fed to the decoder and then

subsequent predictions are computed recurrently. The svs architecture uses additional

fully connected layers to map sequence of latent codes into a vector – hence the name

sequence to vector to sequence (svs). In the sss architecture, however, the hidden codes

from all units are represented as a matrix latent code from which input TMP signal is

reconstructed through a mirrored architecture.

5.6.1 Implementation details

Training and test sets of transmembrane potential (TMP) were generated by using

Aliev Panfilov model [2] on a human-torso geometry model. By varying two param-

eters: origin of excitation and tissue properties representing myocardial scar, we gen-
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Figure 5.6: Bottom: Common skeleton for three architectures, Top: Three architectures of

differing in their ways of converting output from last layers of LSTM to latent representation

Figure 5.7: Comparison of transmembrane potential propagation

erated about 600 simulation data with the combination of 17 different tissue property

configurations and 35 different origins of excitation. To test generalization ability, test

data were selected with different origin of excitation than those used in training.

We used ReLU activation function in both encoder and decoder, ADAM optimizer and

a flat learning rate of 10−3 in all three architectures.
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Figure 5.8: Comparison of reconstruction using three architectures

5.6.2 Comparison and Discussion

We compare three architectures in their ability to generalize in new test cases. We

measure the reconstruction accuracy with four metrics: 1) mean square error (MSE)

of TMP, 2) correlation of TMP, 3) dice coefficient of the scar region, 4) correlation

of activation time. Fig. 5.7 compares TMP propagation reconstructed by using three

architectures with the ground truth. The Language model matches the ground truth

better than other architectures at the beginning of the propagation sequence. However,

later on, other two methods are qualitatively better. The scar region, however, seems

to be better identified by sss architecture compared to other two.

The graphs on Fig. 5.8 shows average of 20 tests, each performed by randomly drawing

200 samples from the test set. It is interesting that the Language model performs quite
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Figure 5.9: Visualization of point cloud in the latent space corresponding training and

test data

good when measured with mean square error and correlation of TMP. But, when we

measure dice coefficient of scar and correlation of activation time derived from the

reconstructed TMP, the Language architecture performs the worst. It suggests that

Language model might be good at preserving temporal consistency but not so much

at learning underlying factors. On the other hand, svs and sss architectures seem to

be better learning underlying factors, which might be because of the stochastic latent

space in these two architectures.

We also visualized the latent representation of the whole dataset- training and test

set- of three different architectures. In Fig. 5.9, top row shows latent point cloud

colored according to the segment where origin of excitation lies. Similarly, bottom row

shows latent point cloud colored according to the segment where scar lies. The heart

is divided into 17 segments according to American heart association (AHA) standard

and each color denotes one segment of the heart where scar/origin lies. We observe

that the latent representation is clustered by the location of origin of excitation in all
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three architectures, but not by the location of scar region. It might be because there

were not many examples of scar regions from the same segment for the network to

generalize. We need further analysis.

The results are thought-provoking. However, we caution that the work is preliminary

in that we tried it on a single geometry and relatively small dataset for a deep network.

We leave some open questions triggered by these observations: Why does a method

performs better with respect to RMSE error but not so well with respect to error of

origin of excitation? Does stochasticity play a role in better representation? Why did

the neural network better represented the origin of excitation than the scar region?

5.7 Discussion and Conclusions:

To our knowledge, this is the first work that integrates a generative network learned

from numerous examples into a statistical inference framework to allow the adaptation

of prior physiological knowledge via a small number of generative factors. The results

show the ability of this concept to improve model-constrained inference.

One interesting future direction of research is proper modeling of the prior distribution

of latent space after unsupervised training. At the moment, we use a naive approach to

estimate the prior distribution as Gaussian by sampling from the marginal distribution

of the decoder. The marginal posterior distribution is a rich distribution. Therefore,

we must be creative in better representing it. This would be a good future direction of

research. Second, since the present formulation is in a personalized setting, we intend

to extend this architecture to learn a geometry-invariant generative model that can be

trained on multiple heart models and applied on a new subject.
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5.8 Summary and Answers to Research Questions

In this chapter, we looked for a better way to represent patterns of TMP signals, x in

the prior distribution pX . We started with the following question:

Q. 2. How can we improve generalization with an alternative representation

of prior knowledge such that it allows efficient inference?

We saw that a deep generative model based on variational autoencoder trained on sim-

ulated samples of transmembrane potential (TMP) can be used as a custom generative

model. Using this generative model, we use a custom hierarchical prior for the trans-

membrane potential. The prior automatically learns the relationship between latent

factors and the generated TMP signals. We also showed that using this prior helps

both the learning useful pattern and adapting generative model based on the ECG

signal via efficient inference. During experiments, we showed that this model indeed

helps to generalize well in the test distribution, even if it is selected to be outside of

the training samples used in learning the prior model.
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Prologue to Part II

We now change gear and take a purely data-driven approach. Here, we are interested

in directly computing conditional distribution of the TMP given ECG data, like the

posterior distribution of TMP given ECG in a Bayesian framework. Here, however,

we do not have the structure of probabilistic graphical model, nor do we have tools

from Bayesian inference. This approach is, therefore, more direct and more flexible.

Deep learning is a quintessential example of this approach. One fundamental question

that arises when dealing with any learning algorithm is its ability to generalize outside

the examples used for learning the conditional distribution. And there are theories

that deal with generalization while learning from samples. However, in case of deep

learning, traditional theories like statistical learning theories seem inadequate in anal-

ysis and design of better learning algorithm and architectures [116]. Although huge

effort is devoted to understand and improve generalization of deep network, we have

not yet reached a consensus or a well understood/agreed theory. On the other hand,

although the field of medical imaging and computational physiology has seen a flood

of work employing deep learning, the amount of work in improving generalization of

deep networks remains extremely small.

Since the main theme of this dissertation is to improve upon the generalization of

learning algorithm for the inverse EP imaging, we focus in this second part in better

understanding generalization and improving it. To improve generalization, we approach

from two general directions:

1. Address distribution mismatch: If there is discrepancy between training and test

set, the generalization might be poor if we do not address it. To address it, we propose

the idea of invariance: to learn a common representation space where the discrepancy

of the projection of training and test set is minimum. We enforce invariance via two

ideas: a) Information Bottleneck, b) Adversarial training.

2. Learning simple functions: Another direction that is complementary to distribution

mismatch is that of learning a simple function (classifier or regressor). This notion has

its root in statistical learning theory and in Occam’s Razor. The ideas is that simpler

functions generalize better. However, what is a simple function? In this direction,

we invoke two ideas a) By using analytical learning theory, we propose that a smooth
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function is a simple function and can help in generalization, b) We propose an entirely

different network architecture merging the ideas from deep learning and kernel methods.

Now, using this new architecture, we ensure that the function lies in Reproducing

Kernel Hilbert Space and the we explicitly penalize the complexity of the function.

The organization of the second part is as follows. In chapter 6, we try to improve gen-

eralization by information bottleneck and analytical learning theory, in chapter 7, we

improve generalization by improving invariance via adversarial training and in chapter

8, we construct function in RKHS and control the complexity. Even though we were

primarily focused in solving the inverse problem of electrophysiological imaging, in the

second part, we took on a general problem of improving generalization. Therefore, we

also test the idea of invariance to improve generalization in X-ray image classification

(Ch. 7). Similarly, in our last chapter we tackle the problem of stability in adver-

sarial training, which is a precursor towards our bigger goal of quantifying the role of

complexity to improve generalization, again an objective broader than solving inverse

problems.



Chapter 6

Learning with Generalization in

Deep Networks

Nothing is more practical than a good theory.

- Vladimir N. Vapnik
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6.1 Introduction

There has been an upsurge of deep learning approaches for traditional image reconstruc-

tion problems in computer vision and medical imaging [67]. Examples include image

denoising [71], inpainting [83], and medical image reconstructions across a variety of

modalities such as magnetic resonance imaging [117] and computed tomography [47].

Despite state-of-the-art performances brought by these deep neural networks, their

ability to reconstruct from data not seen in the training distribution is not well under-

stood. To date, very limited work has investigated the generalization ability of these

image reconstruction networks from a theoretical perspective, or provided insights into

what aspects of representation and learning may improve the ability of these networks

to generalize outside the training data.

In this paper, we take an information theoretic perspective – along with analytical

learning theory – to investigate and improve the generalization ability of deep image

reconstruction networks. Let x be the original image and y be the measurement ob-

tained from x by some transformation process. To reconstruct x from y, we adopt a

common deep encoder-decoder architecture [83, 117] where a latent representation w

is first inferred from y before being used for the reconstruction of x. Our objective is

to learn transformations that are general, possibly learning the underlying generative

process rather than focusing on every detail in training examples. To this end, we pro-

pose that the generalization ability of a deep reconstruction network can be improved

from two means: 1) the ability to generalize to data y that are generated from x (and

thereby w) outside the training distribution; and 2) the ability to generalize to unseen

variations in data y that are introduced during the measurement process but irrelevant

to x.

For the first type of generalization ability, we hypothesize that it can be improved

by using stochastic instead of deterministic latent representations. We support this

hypothesis by the analytical learning theory [56], showing that stochastic latent space

helps to learn a decoder that is less sensitive to perturbations in the latent space and

thereby leads to better generalization. For the second type of generalization ability, we
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hypothesize that it can be improved if the encoder compresses the input measurement

into a minimal latent representation (codes in information theory), containing only the

necessary information for x to be reconstructed. To obtain a minimal representation

from y that is maximally informative of x, we adopt the information bottleneck theory

formulated in [103] to maximize the mutual information between the latent code w and

x, I(x,w), while putting a constraint on the mutual information between y and w

such that I(w,y) < I0. This can be achieved by minimizing the following objective:

lossIB = −I(x;w) + βI(w; y) (6.1)

where β is the Lagrange multiplier. Based on these two primary hypotheses, we present

a deep image reconstruction network optimized by a variational approximation of the

information bottleneck principle with stochastic latent space.

While the presented network applies for general reconstruction problems, we test it

on the sequence reconstruction of cardiac transmembrane potential (TMP) from high-

density body-surface electrocardiograms (ECGs) [109]. Given the sequential nature of

the problem, we use long short-term memory (LSTM) networks in both the encoder

and decoder, with two alternative architectures to compress the temporal information

into vector latent space. We tackle two specific challenges regarding the generalization

of the reconstruction. First, because the problem is ill-posed, it has been important

to constrain the reconstruction with prior physiological knowledge of TMP dynamics

[33, 44, 109]. This however made it difficult to generalize to physiological conditions

outside those specified by the prior knowledge. By using the stochastic latent space, we

demonstrate the ability of the presented method to generalize outside the physiological

knowledge provided in the training data. Second, because the generation of ECGs

depends on heart-torso geometry, it has been difficult for existing methods to generalize

beyond a patient-specific setting. By the use of the information bottleneck principle,

we demonstrate the robustness of the presented network to geometrical variations in

ECG data and therefore a unique ability to generalize to unseen subjects. These

generalization abilities are tested in two controlled synthetic datasets as well as a real-

data feasibility study.

This chapter includes parts from author’s conference publication [35].
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6.2 Related Work

Deep neural networks have become popular in medical image reconstructions across

different modalities such as computed tomography [47], magnetic resonance imaging

[117], and ultrasound [68]. Some of these inverse reconstruction networks are based

on an encoder-decoder structure [47, 117], similar to that investigated in this paper.

Among these, the presented work is the closest to Automap [117] in that the output

image is reconstructed directly from the input measurements without any intermediate

domain-specific transformations. However, these existing works have not investigated

either the use of stochastic architectures or the information bottleneck principle to

improve the ability of the network to generalize outside the training distributions.

The presented variational formulation of the information bottleneck principle is closely

related to that presented in [1]. However, our work differs in three primary aspects.

First, we investigate image reconstruction tasks in which the role of information bot-

tleneck has not been clearly understood. Second, we define generalization ability in

two different categories, and provide theoretical as well as empirical evidence on how

stochastic latent space can improve the network’s generalization ability in a way dif-

ferent from the information bottleneck. Finally, we extend the setting of static image

classification to image sequences, in which the latent representation needs to be com-

pressed from temporal information within the whole sequence.

To learn temporal relationship in ECG/TMP sequences, we consider two sequence

encoder-decoder architectures. One is commonly used in language translation [100],

where the code from the last unit of the last LSTM encoder layer is used as the

latent vector representation to reconstruct x. We also present a second architecture

where fully connected layers are used to compress all the hidden codes of the last

LSTM layer into a latent vector representation. This is in concept similar to the

attention mechanism [7] to selectively use information from all the hidden LSTM codes

for decoding. We experimentally compare the generalization ability of using stochastic

versus deterministic latent vectors in both architectures, which has not been studied

before.
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In the application area of cardiac TMP reconstruction, most related to this paper are

works constraining the reconstruction with prior temporal knowledge in the form of

physics-based simulation models of TMP [109] and, more recently, generative models

learned from physics-based TMP simulation [33]. This however to our knowledge is

the first work that investigated the use of deep learning for the direct inference of

TMP from ECG. This method will also have the unique potential to generalize outside

the patient-specific settings and outside pathological conditions included in the prior

knowledge.

6.3 Methodology

Body-surface electrical potential is produced by TMP in the heart. Their mathematical

relation is defined by the quasi-static approximation of electromagnetic theory [85]

and, when solved on patient-specific heart-torso geometry, can be derived as: y(t) =

Hx(t), where y(t) denotes the time-varying body-surface potential map, x(t) the time-

varying TMP map over the 3D heart muscle, and H the measurement matrix specific

to the heart-torso geometry of a subject [109]. The inverse reconstruction of x from

y at each time instant is ill-posed, and a popular approach is to reconstruct TMP

time sequence constrained by prior physiological knowledge of its dynamics [33, 44,

109]. This is the setting considered in this study, in which the deep network learns

to reconstruct with prior knowledge from pairs of x(t) and y(t) generated by physics-

based simulation. Note that it is not possible to obtain real TMP data for training,

which further highlights the importance of the network to generalize. In what follows,

we use x and y to represent sequence matrices with each column denoting the potential

map at one time instant.

Given the joint distribution of TMP and ECG given by p(x,y), the encoder gives us a

conditional distribution p(w|y). These together defines a joint distribution of (x,y,w):

p(x,y,w) = p(x)p(y|x)p(w|x,y) = p(x,y)p(w|y) (6.2)
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The first term in lossIB in eq.(6.1) is given by

I(x;w) =

∫
p(x,w) log(

p(x|w)

p(x)
)dxdw = H(x) +

∫
p(x,w) log(p(x|w))dxdw

where p(x|w) =
∫ p(x,w,y)

p(w)
dy =

∫ p(x,y)p(w|y)
p(w)

dy is intractable. Letting q(x|w) to be

the variational approximation of p(x|w), we have:∫
p(x,w) log(p(x|w))dxdw =

∫
p(w)[p(x|w) log

p(x|w)

q(x|w)
+ p(x|w) log q(x|w)]dxdw

=

∫
p(w)DKL(p(x|w)||q(x|w))dw +

∫
p(x,w) log q(x|w)dxdw (6.3)

where the KL divergence in the first term is non-negative. This gives us:

I(x;w) ≥
∫
p(x,y,w) log q(x|w)]dxdydw = Ep(x,y)[Ep(w|y)[log q(x|w)]] (6.4)

The second term in lossIB in eq.(6.1) is given by

I(y;w) =

∫
p(y,w) log(

p(w|y)

p(w)
)dydw =

∫
p(y,w) log[

p(w|y)r(w)

r(w)p(w)
]dydw

=

∫
p(y)p(w|y) log(

p(w|y)

r(w)
)dydw −DKL(p(w)||r(w)) (6.5)

≤
∫
p(y)p(w|y) log(

p(w|y)

r(w)
)dydw = Ep(y)[DKL(p(w|y)||r(w))] (6.6)

Combining eq.(6.4) and eq.(6.6), we have

lossIB ≤ Ep(x,y)[−Ep(w|y)

[
log q(x|w)] + βDKL(p(w|y)||r(w))

]
= LIB (6.7)

which gives us LIB to be minimized as an upper bound of the information bottleneck

objective lossIB formulated in eq.(6.1).

Parameterization with neural network:

We model both p(w|y) and q(x|w) as Gaussian distributions, with mean and variance

parameterized by neural networks:

pθ1(w|y) = N (w|tθ1(y),σt
2(y)) qθ2(x|w) = N (x|gθ2(w),σx

2(w)) (6.8)
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Figure 6.1: Illustration of the presented svs stochastic architecture, where both the encoder

and the decoder consists of mean and variance networks.

where σx
2 denotes a matrix that consists of the variance of each corresponding element

in matrix x. This is based on the implicit assumption that each elements in x is

independent and Gaussian, and similarly for w. This gives us:

LIB(θ) = Ep(x,y)[−Epθ1 (w|y)[log qθ2(x|w)] + β.DKL(pθ1(w|y)||r(w))]

where θ = {θ1,θ2}. We use reparameterization w = t + σt � ε as described in [58]

to compute the inner expectation in the first term. The KL divergence in the second

term is analytically available for two Gaussian distributions. We obtain:

LIB(θ) = Ep(x,y)

[
Eε∼N (0,I)

(∑
i

1

σx2
i

(xi − gi(t+ σt � ε))2 + logσx
2
i

)
+ β.DKL(pθ1(w|y)||N (w|0, I))

]
(6.9)

where gi is the ith function mapping latent variable to the ith element of mean of x, such

that gθ2 = [g1, g2...gU ]. The deep network is trained to minimize LIB(θ) in eq.(6.9)

with respect to network parameters θ.

Network architectures:

The sequence reconstruction network is realized using long short-term memory (LSTM)

neural networks in both the encoder and decoder. To compress the time sequence

into a latent vector representation, we experiment with two alternative architectures.
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First, based on the commonly-used sequence-to-sequence language translation model

[100],we consider a svs-L architecture that employs the hidden code of the last unit

in the last encoding LSTM layer as the latent vector representation for reconstructing

TMP sequences. Second, we propose a svs architecture where two fully connected

layers are used to compress all the hidden codes of the last LSTM layer into a vector

representation. In the decoder, this latent representation is expanded by two fully-

connected layers before being fed into LSTM layers as shown in Fig. 6.1.

6.4 Statistical versus Analytical Learning Theory

Learning theory deals with the analysis of a theory of learning. Statistical learning the-

ory [14,105] is the foundational learning theory from the beginning of machine learning

championed by Vapnik. Statistical learning theory assumes that in any learning process

a training and test set is an instant of many possible draw from the distribution of data

and provides a measure of upper bound of how bad things can go in expectation and

probability. Two remarks are in order. First, since the argument is in probability, if we

talk about the specific learning problem instance, we may not be able to say anything

about the problem instance. Second, since it gives us upper bound of how bad things

can go, the statistical theory is the worst case analysis of the whole class of problem.

Statistical learning theory provides generalization bound based on the complexity (like

a measure of size) of the class of functions like VC dimension, Rademacher averages,

etc. This comes as a drawback in analyzing neural networks because they have high

complexity; therefore, the bounds are large and are not very useful. Recently, Zhang

et. al. [116] empirically showed that any arguments in terms of sample complexity of

the function does not take us too far in case of neural networks because they have

enough capacity to memorize the whole random dataset, and yet generalizes well when

trained on data with pattern. We cannot apply statistical learning theory to explain

good generalization behavior of neural networks, let alone talk about how to improve

them.

Therefore, we take a very recently proposed framework of analytical learning the-
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ory [56]. It is fundamentally different from classic statistical learning theory in that

it is strongly instance-dependent. While statistical learning theory deals with data-

independent generalization bounds or data-dependent bounds for certain hypothesis

space, analytical learning theory provides the bound on how well a model learned from

a dataset should perform on true (unknown) measures of variable of interest. This

makes it aptly suitable for measuring the generalization ability of stochastic latent

space for the given problem and data, like ours.

6.5 Encoder-Decoder Learning from the Perspec-

tive of Analytical Learning Theory

In this section we look at the encoder-decoder inverse reconstructions using analytical

learning theory [56]. We start with a general framework and then show that having a

stochastic latent space with regularization helps in generalization.

Let z = (y,x) be an input-output pair, and let Dn = {z(1), z(2), ...,z(n)} denote the

total set of training and validation data where Zm ⊂ Dn be the validation set. During

training, a neural network learns the parameter θ by using an algorithm A and dataset

Dn, at the end of which we have a mapping hA(Dn)(.) from y to x. Typically, we stop

training when the model performs well in the validation set. To evaluate this perfor-

mance, we define a prediction error function, `(x, hA(Dn)(y)) based on our notion of the

goodness of prediction. The average validation error is given by EZm`(x, hA(Dn)(y)).

However, there exists a so-called generalization gap between how well the model per-

forms in the validation set versus in the true distribution of the input-output pair. To

be precise, let (Z,S, µ) be a measure space with µ being a measure on (Z,S). Here,

Z = Y×X denotes the input-output space of all the observations and inverse solutions.

The generalization gap is given by ∆g = Eµ`(x, hA(Dn)(y))−EZm`(x, hA(Dn)(y)). The-

orem 1 in [56] provides an upper bound on the generalization gap ∆g in terms of data

distribution in the latent space and properties of the decoder.

Theorem 2 ( [56]). For any `, let (T , f)be a pair such that T : (Z,S) → ([0, 1]d,
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B([0, 1]d)) is a measurable function, f : ([0, 1]d,B([0, 1]d)) → (R,B(R)) is of bounded

variation as V [f ] <∞, and `(x, h(y)) = (f ◦ T )(z)∀z ∈ Z, where B(A) indicates the

Borel σ- algebra on A. Then for any dataset pair (Dn, Zm) and any `(x, hA(Dn)(y)),

∆g = Eµ`(x, hA(Dn)(y))− EZm`(x, hA(Dn)(y)) ≤ V [f ]D∗[T∗µ, T (Zm)]

where T∗µ is pushforward measure of µ under the map T .

For an encoder-decoder setup, T is the encoder that maps the observation to the latent

space and f becomes the composition of loss function and decoder that maps the latent

representation to the reconstruction loss. Theorem 1 provides two ways to decrease the

generalization gap in our problem: by decreasing the variation V [f ] or the discrepancy

D∗[T∗µ, T (Zm)]. Here, we show that stochasticity of the latent space helps decrease

the variation V [f ]. The variation of f on [0, 1]d in the sense of Hardy and Krause [48]

is defined as: V [f ] =
∑d

k=1

∑
1≤j1<...<jk≤d V

k[fj1...jk ] where V k[fj1...jk ] is defined with

following proposition.

Proposition 1 ( [56]). Suppose that fj1,..jk is a function for which ∂1,...kfj1,..jk exists

on [0, 1]k. Then,

V k[fj1...jk ] ≤ sup
tj1 ,..,tjk∈[0,1]k

|∂1,...kfj1,..jk(tj1 , .., tjk)|

If ∂1,...kfj1,..jk is also continuous on [0, 1]k, then,

V k[fj1...jk ] =

∫
[0,1]k
|∂1,...kfj1,..jk(tj1 , .., tjk)|dtj1 ..dtjk

In our case, f is the prediction error ` as a function of latent representations t:

`(x, h(y)) = ||x− gθ2(t)||
2
F =

∑
i

(xi − gi(t))2 =
∑
i

`i (6.10)

where ||a||F denotes the Frobenius norm of matrix a, and gθ2 maps the latent space

to the estimated x̄. Theorem 1 and Proposition 1 implies that if the cross partial

derivative of the loss with respect to the latent vector at all order is low in all directions

throughout the latent space, then the approximated validation loss would be closer to

the actual loss over the true unknown distribution of the dataset. Intuitively, we

want the loss curve as a function of latent representation to be flat if we want a good

generalization.
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Using stochastic latent space:

In our formulation, the latent vector is stochastic with the cost function given by

eq.(6.9). Using reparameterization η = σt � ε, the inner expectation of the first term

in the loss function LIB is given by

T1 = Eε∼N (0,I)[
∑
i

1

σ2
xi

(xi − gi(t+ σt � ε))2]

=
∑
i

1

σ2
xi

(xi − gi(t+ η))2 =
∑
i

1

σ2
xi

Eε[`i(xi, t+ η)]

Result 2.

T1 =
∑
i

1

σ2
xi

[
`i(xi, t) + 〈σt � Eε[ε],

∂

∂t
`i(xi, t)〉

+
1

2
〈[σt ⊗ σt]� Eε[ε⊗ ε],

[ ∂2

∂tj1 , ∂tj2
`i(xi, t)

]
〉

+ ..+
1

k!
〈[σt ⊗k σt]� Eε[ε⊗k ε],

[ ∂k

∂tj1 , .., ∂tjk
`i(xi, t)

]
〉+ ..

]
where [σt ⊗k σt] denotes k order tensor product of a vector σt by itself.

Proof. Using Taylor series expansion for `i(xi, t+ η),

Eε[`i(xi, t+ η)] = Eε

[
`i(xi, t) + 〈η, ∂

∂t
`i(xi, t)〉+ 1

2
〈[η ⊗ η],

[
∂2

∂tj1 ,∂tj2
`i(xi, t)

]
〉

+ ...+
1

k!
〈[η ⊗k η],

[ ∂k

∂tj1 , .., ∂tjk
`i(xi, t)

]
〉+ ..

]
(6.11)

We move expectation operator inside both brackets and take expectation of only the

first term in the inner product. Using η = σt � ε, we get Eε[η ⊗k η] = [σt ⊗k σt] �
Eε[ε⊗k ε]. Using these in eq.(6.11) yields the required result.

The first term of Result 1, `i(xi, t) (after ignoring 1
σ2
xi

), would be the only term in the

cost function if the latent space were deterministic. The rest of the terms are additional

in stochastic training. Each of these terms is an inner product of two tensor, the first

being [σt ⊗k σt] � Eε[ε ⊗k ε], and the second being the kth order partial derivative
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tensor
[

∂k

∂tj1 ,..,∂tjk
`i(xi, t)

]
. We can thus consider the first tensor as providing penalizing

weights to different partial derivatives in the second tensor. Since each inner product

is added to the cost, we are minimizing them during optimization. This gives two

important implications:

1. For sufficiently large samples, Eε[ε ⊗k ε] must be close to central moments of

isotropic Gaussian. However, in practice, the number of samples of ε remains

constant. As we move to the higher order moment tensors, we can expect that

they do not converge to that of the standard Gaussian. This, luckily, works in

our favor. Since we are minimizing 1
k!
〈[σt⊗k σt]�Eε[ε⊗k ε],

[
∂k

∂tj1 ,..,∂tjk
`i(xi, t)

]
〉

for each order, the inner product can be vanished for arbitrary ε only by driv-

ing partial derivative tensors towards zero. Therefore, minimizing the sum of

all the inner product for arbitrary ε would minimize most of the terms in the

partial derivative tensor. From Proposition 1, this corresponds to minimizing the

variation of function `i, and consequently variation of the total error function

` according to eq.(6.10). Hence, additional terms in the stochastic latent space

formulation contributes to decreasing the variation V [f ] and consequently the

generalization gap.

2. Not all the partial derivatives are equally weighted in the cost function. Due to

the presence of weighting tensor [σt ⊗k σt] in the first tensor of inner product,

different partial derivative terms are penalized differently according to the value

of σt. Combination of the KL divergence term in eq.(6.9) with T1 tries to increase

standard deviation, σt towards 1 whenever it does not significantly increase the

cost T1: higher value of σt penalizes the partial derivatives of a certain direction

more heavily, making the cost flatter in some directions than other.

Strictly speaking, Proposition 1 requires cross partial derivatives to be small through-

out the domain of latent variable, which is not included in the above analysis. It

however should not significantly affect the observation that, compared to deterministic

formulation, the stochastic formulation decreases the variation V [f ].
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6.6 Experiments & Results

Since it is not possible to obtain real TMP data, the reconstruction network is trained

on simulated data pairs of y and x. We focus on evaluating three generalization tasks

of the network: to learn how to reconstruct under the prior physiological knowledge

given in simulation data while generalizing to 1) unseen pathological conditions in x,

2) unseen geometrical variations in y that are irrelevant to x, and 3) real clinical data.

6.6.1 Generalizing outside the training distribution of TMP

Dataset and implementation details:

We simulated training and test sets using three human-torso geometry models. Spa-

tiotemporal TMP sequences were generated using the Aliev-Panfilov (AP) model [2],

and projected to the body-surface potential data with 40dB SNR noises. Two parame-

ters were varied when simulating the TMP data: the origin of excitation and abnormal

tissue properties representing myocardial scar. Training data were randomly selected

with regard to these two parameters. Test data were selected such that values in these

two parameters differed from those used in training in four levels: 1) Scar: Low, Exc:

Low, 2) Scar: Low, Exc: High, 3) Scar:High, Exc: Low, and 4) Scar: High, Exc: High,

where Scar/Exc indicates the parameter being varied and High/Low denotes the level

of difference (therefore difficulty) from the training data. For example, Scar: Low, Exc:

High test ECG data was simulated with region of scar similar to training but origin of

excitation very different from that used in training.

For all four models being compared (svs stochastic/deterministic and svs-L stochas-

tic/deterministic), we used ReLU activation functions in both the encoder and decoder,

ADAM optimizer [57], and a learning rate of 10−3. Each neural network was trained

on approximately 2500 TMP simulations on each geometry. In addition to the four

neural networks, we included a classic TMP inverse reconstruction method (Greensite)

designed to incorporate temporal information [44]. On each geometry, approximately
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Figure 6.2: Reconstruction accuracy of different architectures at the presence of test data

at different levels of pathological differences from training data.

Figure 6.3: Examples of TMP sequences reconstructed by different methods being compared.

300 cases were tested for each of the four difficulty levels. We report the average and

standard deviation of the results across all three geometry models.

Results:

The reconstruction accuracy was measured with four metrics: 1) mean square error

(MSE) of the TMP sequence, 2) correlation of the TMP sequence, 3) correlation of
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Table 6.1: Accuracy of different architectures at reconstructing unseen pathological condi-

tions

Method

\Metric

MSE TMP Corr. AT Corr. Dice Coeff.

svs stochastic 0.037± 0.021 0.885± 0.061 0.885± 0.072 0.645± 0.181

svs

deterministic

0.075± 0.013 0.77± 0.038 0.12± 0.13 0.01± 0.006

svs-L

stochastic

0.068± 0.023 0.838± 0.053 0.601± 0.074 0.28± 0.154

svs-L

deterministic

0.067± 0.02 0.84± 0.053 0.57± 0.052 0.165± 0.092

Greensite – – 0.514± 0.006 0.138± 0.005
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TMP-derived activation time (AT), and 4) dice coefficients of the abnormal scar tissue

identified from the TMP sequence. As summarized in Figure 6.2 and Table 1, in all

test cases with different levels of pathological differences from the training data, the

stochastic version of each architecture was consistently more accurate than its deter-

ministic counterpart. In addition, most of the networks delivered a higher accuracy

than the classic Greensite method (which does not preserve TMP signal shape and

thus its MSE and correlation of TMP was not reported), and the accuracy of the svs

stochastic architecture was significantly higher than the other architectures. These

observations are reflected in the examples of reconstructed TMP sequences in Fig. 6.3.

6.6.2 Generalization to geometrical variations irrelevant to

TMP

Dataset and implementation details:

TMP data were simulated as described in the previous section, but on a single heart-

torso geometry. ECG data were simulated from TMP with controlled geometrical

variations by rotating the heart along Z-axis at different angles (-20 degree to +20

degree at the interval of 1 degree). We trained the network to reconstruct TMP us-

ing ECG simulated by i) using five rotation angles from -2 degree to 2 degree, ii) ten

rotation angles from -4 degree to +5 degree. We then compared the stochastic and de-

terministic svs networks on test ECG generated by the rest of the rotation angles. The

network architecture and training details were the same as described in the previous

section. Test ECG sets at each rotation angle were generated from 250 TMP signals

with different tissue properties and origins of excitation and we report the mean and

standard deviation of results for each angle.
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Figure 6.4: Comparison of TMP reconstruction by stochastic vs. deterministic networks

using training data with a i) high and ii) low amount of variations in geometrical factors

irrelevant to TMP. Values along the x axis shows the degree of rotation of the heart relative

to the training set, i.e., cases in the center of the x-axis are the closest to the training data.

Figure 6.5: Comparison of stochastic vs. deterministic architectures at different values of β.

At β = 10, the error stays low and flat for a large range of deviation in angles in stochastic

architecture.

Results:

As summarized in Fig. 6.4(ii), when trained on a small interval of five rotation values,

the stochastic information bottleneck consistently improves the ability of the network
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Figure 6.6: Comparison of scar region identified by different architectures and the Greensite

method with reference to in vivo voltage maps.

to generalize to geometrical values outside the training distribution. This margin of

improvement also increases as we move further away from the training set, i.e. as we

go left or right from the centre, and seems to be more pronounced when measuring

the dice coefficient of the detected scar. When trained on a larger interval of ten

rotation values, however, this performance gap diminishes as shown in Fig. 6.4(i).

This suggests that the encoder-decoder architecture with compressed latent space can

naturally learn to remove variations irrelevant to the network output, although the use

of stochastic information bottleneck allows the network to generalize from a smaller

number of training examples.

To understand how the parameter β in the information bottleneck loss LIB plays a

role in generalization, we repeated the above experiments with different values of β.

As shown in Fig. 6.5, as we increase β, the generalization ability of the network first

increases and then degrades reaching optimum value at β = 10.

6.6.3 Generalization to real data: a feasibility study

Finally, we tested the presented networks – trained on simulated data as described

earlier – on clinical 120-lead ECG data obtained from a patient with scar-related ven-

tricular tachycardia. From the reconstructed TMP sequence, the scar region was de-

lineated based on TMP duration and compared with low-voltage regions from in-vivo

mapping data. As shown in Fig. 6.6, because the network is directly transferred from

the simulated data to real data, the reconstruction accuracy is in general lower than

that in synthetic cases. However, similar to the observations in synthetic cases, the
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svs stochastic model is able to reconstruct the region of scar that is the closest to the

in-vivo data.

6.7 Conclusion

To our knowledge, this is the first work that theoretically investigate the general-

ization of inverse reconstruction networks through the two different perspectives of

stochasticity and information bottleneck, supported by carefully designed experiments

in real-world applications. Note that the upper bound LIB ≥ lossIB+DKL(p(w)||r(w).

Therefore, minimizing LIB puts an additional constraint on the marginal p(w) to be

close to a predefined r(w). It is possible that the choice of r(w) might also play a

role in generalization and will be reserved for future investigations. Future works will

also extend the presented study to a wider variety of medical image reconstruction

problems.

6.8 Summary and Answer to Research Questions

Q. 3. a) How can we understand and improve generalization when there is

possibility of shift in training and test distribution?

When we know that the test data may be shifted from the training data due to the

presence of nuisance factors, like geometric variation as shown in this chapter, then, we

may be able to counter the effect of that variation by controlling the flow of information

using information bottleneck principle. We showed that this, in turn, helps the network

learn representations that are invariant to such nuisance factors and improves gener-

alization. We showed in the experiments that this strategy improves generalization

ability under low data situation.

Another situation of data shift that we investigated is the shift in the training and test

distribution due to the variation in the source. In such situation, we learn invariant
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representation by adversarial training strategy. This is particularly successful if there

is good variation among different sources and the factor of variation remains similar in

the new test data from future sources.

Q.3. b) How can we understand and quantify the role of smoothness and

regularity properties of the neural network regarding generalization?

By using analytical learning theory, we argued that if the decoder is smooth, it helps

reduce the generalization gap. We then theoretically established the link between

random perturbation (stochasticity) in the latent space (as in VAE type reparameteri-

zation) and the smoothness of the decoder. Through experiments, we showed that the

stochasticity in the latent space does help to improve generalization of the reconstruc-

tion network.



Chapter 7

Generalization via Invariance

...the search for constancy, the tendency towards certain invariants,

constitutes a characteristic feature and immanent function of perception.

This function is as much a feature of perception of objective experience

as it is a condition of objective knowledge.

- Ernst Cassirer
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7.1 Introduction

Automatic interpretation and disease detection in chest X-ray images is a potential use

case for artificial intelligence in reducing the costs and improving access to healthcare.

This modality is the most commonly prescribed in the world, not only in the context of

clinical examination, but also for routine screening and even legal procedures such as

health surveys for immigration purposes. Therefore, analysis of X-ray images through

several computer vision algorithms has been an important topic of research in the

past. Recently, deep learning based image classification [53, 88] has found important

application in this area.

Most of these deep learning approaches are trained and tested on the same dataset

and/or a single source. This is an unrealistic assumption in the case of medical image

analysis. In radiology, we can always expect different images coming from different

scanner, population, or image settings and therefore we can expect test images are

different from the ones used in training. In non-quantitative imaging modalities, such

as X-ray, this inconsistency of images across datasets is even more drastic. Another

source of variability comes from the patients: one can always expect that the X-ray

images of new patients in the future would be somewhat different from the images

the network is trained on. Therefore, variability in test images should be considered a

natural setting and models should be trained in such a way that it would work equally

well when test images are different from the trained ones.

Unfortunately, the current methods are not geared towards addressing the scenario of

test images being different from the training set. We found that the current popular

deep learning architectures in medical imaging suffer from drop in performance when

an X-ray image from a new source dataset is tested on a model trained on different

dataset (see Table 7.2). This is a significant hurdle for adaptation of AI in the practice

of radiology. The question of generalization across different sources of X-ray images,

therefore, is an important clinical problem that needs our prompt attention. Recently,

this need has been realized and the radiology editorial board has encouraged testing

in external test set [13]. However, there are limited works looking at the issue of this
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source generalization in medical imaging. Some of the works known to have tried to

answer the question of generalization by intensity normalization and adding Gaussian

noise layers to neural networks [60] while others use simple ensemble strategy as in [73].

Towards the resolution of this issue, we look at this problem from the perspective of

generalization to out-of-distribution test cases under certain assumptions. We note

that the this problem of generalization cannot be tackled by using rich literature in the

field of statistical learning theory (SLT) [105] because SLT starts from the fundamental

assumption that the training and testing data are randomly selected (iid assumption)

from the same distribution. To address this generalization problem, we need to think

about how to generalize when iid assumption is invalid and test sets are from a different

distribution. Drawing ideas from causality and invariant risk minimization [3], we

propose that the key is to learn features that are invariant in several X-ray datasets,

and would be valid features even for the new test cases. We achieve feature invariance

by using adversarial penalization strategy. To learn this invariant representation, we

need different X-ray datasets that essentially contain similar diseases, but are different

due to different practical image acquisition and other nuisance factors. Our second

contribution in this paper is to develop and provide such a mixed dataset combining

four different public sets of images, with new labeling for pneumonia and consolidation,

to study this problem and for the benefit of the community.

In this chest X-ray image classification task, we train the network with data from

multiple sources and test on an X-ray dataset from an entirely different source to assess

generalization ability. We show that the proposed method does help in generalization.

We also perform experiments using Grad-CAM [93] to localize the regions in X-ray that

are attended by the network during classification. Using Grad-CAM, we qualitatively

evaluate and compare the behaviour of the baseline and the proposed method.

This chapter includes parts from author’s conference publication [36]. This was a joint

work with the team from IBM Research, Almaden, San Jose.
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7.2 Related Work

Generalization is an old topic in machine learning. Earlier works on generalization con-

centrated on statistical learning theory [14,105], studying the worst case generalization

bound based on the capacity of the classifier. Later on, other view points emerged like

PAC Bayes [72], information theoretic [113] and stability based methods [15]. Modern

works on generalization, however, find statistical learning theory insufficient [116] and

propose other theories from analytical perspectives [56]. Our work is quite different

from these works. Most of these works are about in-source generalization and assume

that data is independent and identically distributed (i.i.d) both in training and testing.

We, however, start with the assumption that the training and testing could be from

different distributions, but share some common, causal features. Based on the prin-

ciples of Invariant Risk Minimization [3], we propose the idea that learning invaraint

features from multiple sources could lead to learning causal features which would help

in generalization to new sources.

Another closely related area to our work is that of domain adaptation [31, 94], and

its application in medical imaging [20]. In a domain adaptation setting, the data is

available from source and target domains; but, the labels are available only from the

source domain. The objective is to learn to adapt knowledge from source to predict

label of the target. Although similar in spirit, our work is quite different from domain

adaptation in that we do not have target data to adapt to during training. Rather

than adapting from source to target, we are interested in generalization to any new

data.

We draw idea of distribution matching using GANs from unsupervised domain adap-

tation [31]. Other ideas of distribution matching like Maximum Mean Discrepancy

(MMD) [63, 64] are related to our work. In comparison, the adversarial approach has

been found to be very powerful and easily extendable to more than two sources, which

is cumbersome to realize using MMD.
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7.3 Method

7.3.1 Main Idea

Our key idea to improve generalization stems from the intuition of ignoring irrelevant

features in X-ray images and focus on important, causal features. Imagine a radiologist

trying to diagnose pneumonia from the X-ray images. What enables her to generalize

her knowledge to a case she has never seen before? We argue that she can generalize

because she focuses on key features relevant to pneumonia while ignoring other irrele-

vant features that might vary with the source of X-ray image. We can think of the key

features in X-ray image that indicate pneumonia as causal features, while the features

that vary from sources to sources but are not relevant for the purpose of pneumonia

as non-causal features.

Causation as Invariance Following reasoning similar to [3], we argue that extract-

ing invariant features from many different sources would help the network focus on

extracting causal features. This would help the network generalize to new sources in

the future assuming that it would extract causal features from the new X-ray images

obtained in the future.

To force a network to learn invariant features, we propose an architecture as shown in

Fig. 7.1 based on adversarial penalization strategy. It has three major components:

Feature extractor, Discriminator and Classifier. Drawing ideas from unsupervised do-

main adaptation [31], we train the discriminator to classify which source the image

was obtained from just using the latent features extracted by the feature extractor.

The discriminator is trained to well identify the source from the features. The feature

extractor, however, is trained adversarially to make it very difficult for the discrimi-

nator to classify among sources. This way, we force the feature extractor network to

extract features from the X-ray images that are invariant across different sources for if

there were any element in the latent feature that is indicative of the source, it would

be easier for the discriminator to identify the sources. At the end, we expect the fea-

ture extractor and discriminator to reach an equilibrium where the feature extractor
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Figure 7.1: Proposed architecture to learn source invariant representation while simultane-

ously classifying disease labels

generates features that are invariant to the sources. Meanwhile, the same features are

fed to the disease classifier which is trained to properly identify disease. Hence, the

features must be source invariant and at the same time discriminative enough of the

disease. Next, we describe three main components of our network.

1. Feature extractor: The feature extractor is the first component that takes in the

input X-ray image and gives a latent representation. In Fig. 7.1, the feature extractor

consists of a Resnet 34 [51] architecture up to layer 4 followed by global average pooling

layer.

2. Discriminator: the discriminator consists of fully connected layers which take in

features after global average pooling layer and try to classify which of the sources the

image is obtained from. If adversarial training reaches equilibrium, it would mean that

feature representation from different sources are indistinguishable (source invariant).

3. Classifier: The output of the feature extractor network should not only be source

invariant, but also be discriminative to simultaneously classify X-ray images accord-

ing to the presence or absence of disease. In our simple model, we simply use a fully

connected layer followed by sigmoid as the classifier.
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7.3.2 Training

From Fig. 7.1, the disease classification loss and source classification (discrimination)

loss are respectively defined as:

Lp(θe, θc) = E
p(x,y)

[`BCE(fc(Ge(x; θe); θc), y)] (7.1)

Ls(θe, θd) = E
p(x,ys)

[`CE(D(Ge(x; θe); θd), ys)] (7.2)

where `BCE(ŷ, y) = y log ŷ + (1 − y) log(1 − ŷ) is the binary cross entropy loss and

similarly `CE(ŷ, y) =
∑

i(ys)i log(ŷs)i + (1 − (ys)i) log(1 − (ŷs)i) is the cross entropy

loss. We train extractor, classifier and discriminator by solving following min-max

problem.

θ̂e, θ̂c = argmin
θe,θc

Lp(θe, θc)− λLs(θe, θ̂d), θ̂d = argmin
θd

Ls(θ̂e, θd) (7.3)

It is easy to note that this is a two player min-max game where two players are trying

to optimize an objective in opposite directions: note the negative sign and positive sign

in front of loss Ls in eq.(7.3). Such min-max games in GAN literature are notorious

for being difficult to optimize. However, in our case optimization was smooth as there

was no issue with stability.

To perform adversarial optimization, two methods are prevalent in the literature. The

first method, originally proposed in [43], trains the discriminator while freezing feature

extractor and then freezes discriminator to train feature extractor while inverting the

sign of loss. The second approach was proposed in [31], which uses a gradient reversal

layer to train both the discriminator and feature extractor in a single pass. Note

that the former method allows multiple updates of the discriminator before updating

the feature extractor while the latter method does not. Many works in GAN literature

reported that this strategy helped in learning better discriminators. In our experiments,

we tried both and found no significant difference between the two methods in terms of

stability or result. Hence, we used gradient reversal because it was time efficient. To

optimize the discriminator, it helps if we have balanced dataset from each source. To

account for imbalanced dataset from each source, we resample data from the source with
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small size until the source of largest size is exhausted. By such resampling, we ensure

that there is a balanced stream of data from each source to train the discriminator.

7.3.3 Grad-CAM Visualization

Grad-CAM [93] identifies important locations in an image for the downstream tasks

like classification. It visualizes the last feature extraction layer of a neural network

scaled by the backpropagated gradient and interpolated to the actual image size.

In this paper, we use Grad-CAM to visualize which location in the X-ray is being

attended by the neural network when we train with and without adversarial penaliza-

tion. Our hypothesis is that a method that extracts source invariant features should

be extracting more relevant features to the disease to be identified, whereas a network

which was trained without specific guidance to extract source invariant features would

be less focused in the specific diseases and may be attending to irrelevant features in

the input X-ray image. Using Grad-CAM, we qualitatively verify this hypothesis.

7.4 Datasets and Pneumonia/Consolidation Label-

ing Scheme

To learn invariant features from X-ray dataset for detecting signs of diseases, we need

labeled datasets from several different sources. We have created such a dataset using

publicly available images and generating labels when necessary. We include recently

released large datasets of chest X-ray images like the ChestXray14 dataset released by

NIH [110], MIMIC-CXR dataset [55] released by MIT Laboratory for Computational

Physiology, a part of the Institute for Medical Engineering and Science , and CheXpert

dataset released by researchers at Stanford [53]. We also have access to a smaller

internally curated dataset of images originating from Deccan Hospital in India.

We are interested in classification task detecting signs of pneumonia and consolida-
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tion in chest X-ray images. Consolidation is a symptom of disease (occuring when

alveoli is filled with something other than air, such as blood) whereas Pneumonia is

a disease often causing consolidation. Radiologists use consolidation, potentially with

other signs and symptoms, to diagnose pneumonia. In a radiology report, both of

these may be mentioned. Therefore, we have used both to build a dataset of pneumo-

nia/consolidation.

We have used all four datasets listed above. The Stanford CheXpert dataset [53] is

released with images and labels, but without accompanying reports . The NIH dataset

is also publicly available with only images and no reports. A subset of 16,000 images

from this dataset were examined by our radiologists and prepared reports. For the

MIMIC dataset, we have full-fledged reports provided under a consortium agreement

to us for the MIMIC-4 collection recently released [54]. For Deccan collection, we have

the reports along with images. For the NIH, MIMIC and Deccan datasets, we used

our natural language processing (NLP) labeling pipeline [23, 66], to find positive and

negative examples in the reports whereas for the Stanford dataset, we used the labels

provided by the Stanford team.

Using NLP generated and available labels (for CheXpert), we created training dataset

by including images with positive indication of pneumonia or consolidation in our

positive set and those with no indication of pneumonia or consolidation in the negative

set. Table 7.1 lists the number of images from each class for each dataset.

7.5 Experiments and Results

We use four datasets as shown in Table.7.1. We use simple Resnet-34 architecture

with classifier as our baseline so that enforcement of invariance through discriminator

is the only difference between baseline and proposed method. Experiments using both

the architecture use a leave-one-dataset-out strategy: we trained on three of the four

datasets and left one out. Each experiment has two test sets: 1)in-source test that

draws from only the unseen samples from datasets used for training, 2) out-of-source
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Table 7.1: The distribution of the datasets used in the paper. The breakdown of

the Positive (pneumonia/consolidation) and Negative (not pneumonia/consolidation)

cases.

Leave out Dataset
Train Test

Positive Negative Positive Negative

Stanford 15183 123493 1686 13720

MIMIC 83288 49335 23478 13704

NIH 1588 6374 363 1868

Deccan Hospital 50 1306 12 379

Total 100109 180508 25539 29671

Table 7.2: The classification results in terms of area under ROC curve from baseline

ResNet34 model, and our proposed architecture. Each row lists a leave-one-dataset-out

experiment.

Leave out Dataset
Baseline Proposed Architecture

in-source test out-of-source test in-source test out-of-source test

Stanford 0.74 0.65 0.74 0.70

MIMIC 0.80 0.64 0.80 0.64

NIH 0.82 0.73 0.71 0.76

Deccan Hospital 0.73 0.67 0.75 0.70

test set, only including test samples from the fourth dataset that is not used in training.

Note that all images from all sources are resized to 512x512.

The results of the classification experiments are listed in Table 7.2. We have chosen the

area under ROC curve (AUC-ROC) as the classification metric since this is the standard

metric in computer-aided diagnosis. The first observation is that in all experiments,

both for baseline and for our proposed architecture, the AUC-ROC curve decreases as

we move from in-source test set to the out-of-source test set as expected. However,

this drop in accuracy is generally smaller in our proposed architecture. For example,
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Figure 7.2: The qualitative comparison of the activation maps of the proposed and the

baseline models with the annotation of an expert radiologist. The first column shows

the region marked by the expert as the area of lung affected by pneumonia. The second

column shows the original image for reference. The third and fourth columns are the

Grad-CAM activation of the proposed and baseline models respectively.

when the Stanford dataset is left out of training, in the baseline method the difference

between in-source and out-of-source tests is 0.09 (from 0.74 to 0.65), whereas in our

proposed architecture, the drop in AUC-ROC is only 0.05 (from 0.74 to 0.70). While

the performance on the in-source test stays flat, we gain 5% improvement in area under

ROC curve, from 0.65 to 0.7, for out-of-source test.

Similar pattern holds in both the case of NIH and Deccan datasets: in both cases, the

drop in performance due to out-of-source testing is smaller for the proposed architecture

compared with the baseline classifier. Surprisingly for the NIH dataset, the out-of-

source testing results in higher accuracy, which we interpret as heavy regularization

during training. In case of the MIMIC dataset, the performance remains the same for
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baseline and the proposed method.

Figure 7.2 shows Grad-CAM visualization to qualitatively differentiate between the

regions or features focused by a baseline model and the proposed model while clas-

sifying X-ray images. Three positive examples and their activation maps are shown.

The interpretation of activation maps in chest X-ray images is generally challenging.

However, the evident pattern is that the heatmaps from the proposed method (third

column) tends to agree more than the baseline (forth column) with the clinician’s

marking in the first column. Furthermore, proposed method shows fewer spurious ac-

tivations. This is especially true in row 2 wherein the opacity from the shoulder blades

are falsely highlighted as lungs pneumonia.

7.6 Conclusion and future work

We tackled the problem of out of source generalization in the context of chest X-ray im-

age classification problem by proposing an adversarial penalization strategy to obtain a

source-invariant representation. The availability of multiple public datasets allowed us

to test our method through leave-one-dataset-out training and then testing on the left

out dataset. In experiments, we show that the proposed algorithm provides improved

generalization compared to the baseline. In the course of this work, we developed la-

beling methods and applied to the text reports accompanying these datasets to find

positive samples for pneumonia/consolidation. These pneumonia/consolidation label

lists constitute a new resource for the community and will be released publicly.

It is important to note that the performance on the in-source test set does not neces-

sarily increase in our method. Mostly it stays flat except in one case, namely the NIH

set, where the baseline beats the proposed method in the in-source test. This can be

understood as a trade-off between in-source and out-of-source performance induced by

the strategy to learn invariant representation, i.e., by learning invariant features our

objective is to improve on the out-of-source test cases even if in-source performance

degrades. A possible route for further examination is the impact of the size of the
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training datasets and left-out set on the behaviour of the model. It is noteworthy that

we have kept the feature extractor and classifier components of our current architec-

ture fairly simple to avoid excessive computational cost owing to adversarial training

and large data and image size. A more sophisticated architecture might enhance the

disease classification performance and is left as future work.



Chapter 8

Complexity Control

I claim that many patterns of Nature are so irregular and fragmented, that, compared

with Euclid—a term used in this work to denote all of standard geometry—Nature

exhibits not simply a higher degree but an altogether different level of complexity . . .

The existence of these patterns challenges us to study these forms that Euclid leaves

aside as being “formless,” to investigate the morphology of the “amorphous.”

- Benoit Mandelbrot
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In the previous chapters, we saw that smoothness of the neural function from the

input space to the output space is a crucial component to improve generalization. In

the literature, there are other works including that of Bartlett et al. [8] who also point

to the importance of smoothness of neural functions in generalization. Comparing this

idea of smoothness with other works in the field of adversarial robustness [24] and

stability of generative adversarial networks [101] made me realize that the problem of

lack of regularity of neural functions is a fundamental one. The fact that we do not care

about the regularity of neural functions during training, and that there is no direct way

to control it might lie at the core of numerous pathology of neural networks including

adversarial examples, instability in training of GANs and difficulty in generalization.

For example, let’s take Cohen et al. [24] regarding existence of adversarial examples

and remedy via randomized smoothing. Their arguments can be summarized in simple

terms as follows. Adversarial examples exist if there exists an examples x+ε near x such

that they have different labels (say y and y′). But, that is only possible if the function

from x to y fluctuates very rapidly within a small neighborhood of ε, implying that the

function is not very regular. Once this is understood, the solution is simple: just make

the function smooth, which they do by something called randomized smoothing, and

provide a guarantee. Once we understand this, we start to see connections between

randomized smoothing and ensemble methods in semi-supervised learning, thereby

essentially connecting adversarial robustness with generalization. Similarly, Hoang

et al. [101] argue that GANs are unstable because as the training progresses, the

discriminator should become more and more steeper. To understand this, let’s assume

x1 and x2 lie in two different distributions. As the two distributions come closer, the

distance x1 − x2 = ε gets smaller and smaller, but the discriminator must always

label them as 0 and 1 (without loss of generality) respectively. Consequently, the

discriminator function must become extremely steep to the extent of being infinitely

steep resulting into instability. Obviously, some kind of gradient penalization is always

needed while training GANs and gradient penalization seems to do the trick.

While these things are to some extent understood and some ad-hoc fixes based on

gradient penalization, gradient clipping, ensemble etc have been proposed, these solu-

tions do not address the fundamental problem: there is no way to enforce regularity
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throughout the input space during training of neural networks. Towards the di-

rection of principled enforcement, we propose a different kind of neural network which

lies in Reproducing Kernel Hilbert Space (RKHS). In addition, we provide a principled

way to control the complexity of the function space providing a way to control the

regularity of neural functions. We test this network in the application of estimating

KL divergence via adversarial training, essentially demonstrating the efficacy of our

construction to stabilize adversarial training.

Obviously, as a next step, we intend to extend this theory to improve generalization as

well; and then to adversarial robustness. However, proving that regularity can solve all

these problems and that this technique works for all of them is a daunting task, and is

beyond the scope of this dissertation.

8.1 Introduction

Calculating Kullback–Leibler (KL) divergence from data samples is an essential compo-

nent in many machine learning problems that involve Bayesian inference or the calcula-

tion of mutual information. In small data regime, this problem has been studied using

variational technique and convex optimization [78]. In the presence of ever-increasing

data, several neural network models have been proposed which require estimation of

KL divergence such as total correlation variational autoencoder (TC-VAE) [21], ad-

versarial variational Bayes (AVB) [74], information maximizing GAN (InfoGAN) [22],

and amortized MAP [97]. These large scale models have imposed the following new

requirements on estimating KL divergence: 1. Scalability: The estimation algorithm

should be able to compute KL divergence from a large amount of data samples. 2.

Minibatch compatibility: The algorithm should be compatible with minibatch-based

optimization and allow backpropagation (or other ways of optimizing the rest of the

network) based on the estimated value of KL divergence.

These needs make classic methods such as [78] impractical, but were met by modern

neural network based methods such as variational divergence minimization (VDM)
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[80], mutual information neural estimation (MINE) [9], and GAN-based KL estimation

[76,97]. A key attribute of these methods is that they are based on updating a neural-

net discriminator function to estimate KL divergence from a subset of samples, which

makes them scalable and minibatch compatible. We, however, noted that even in

simple toy examples, these methods tended to be either unreliable (high fluctuation of

estimates, as in GAN based approach by [76]), or unstable (discriminator yields infinity,

as in MINE and VDM) (see Table.8.1). This behavior exacerbated when increasing the

size of the discriminator. Similar observations of instability of VDM and MINE have

been reported in the literature [76,98].

In this paper, we attempt to provide a theoretical underpinning for the core problem of

the large fluctuation in the GAN based estimation of KL divergence. We approach this

problem from the perspective of sample complexity, and propose that these fluctuations

are a consequence of not controlling the complexity of the discriminator function. This

direction has not been explored in existing works, and it faces the open question of

how to properly measure the complexity of the large function space represented by

neural networks. Note that naive approaches to bound complexity by the number of

parameters would neither be guaranteed to yield tight bound, nor be easy to implement

because it requires dynamically changing the size of the network during optimization.

We introduce the following contributions to resolve this challenge. First, to be able

to compute the complexity of the discriminator function space, we propose a novel

construction of the discriminator such that it lies in a smooth function space, the Re-

producing Kernel Hilbert Space(RKHS). Leveraging sample complexity analysis and

mean embedding of RKHS, we then bound the probability of the error of KL-divergence

estimates in terms of the complexity of RKHS space. This further allows us to theo-

retically substantiate our main proposition that not controlling the complexity of the

discriminator may lead to high fluctuation in estimation. Finally, we propose a scal-

able way to control the complexity of the discriminator based on the obtained error

probability bound. In controlled experiments, we demonstrate that failing to control

the complexity of the discriminator function leads to fluctuation in KL divergence

estimates, and that the proposed method decreases such fluctuations.
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This chapter includes parts from author’s publication [34].

8.2 Related Works

Nguyen et al [78] used variational function to estimate KL divergence from samples of

two distribution using convex risk minimization (CRM). They used the RKHS norm

of the variational function as a way to both measure and penalize the complexity of

the variational function. However, their work required handling all data at once and

solving a convex optimization problem that could not be scaled. VDM reformulates the

f-Divergence objective using Fenchel duality and uses a neural network to represent the

variational function [80]. It is in concept close to [78], while the use of neural network

and adversarial optimization made the estimation scalable. It however did not control

the complexity of the neural-net function, resulting in unstable estimations.

One area of modern application of KL-divergence estimation is in computing mutual

information which, as shown in MINE [9], is useful in applications such as stabilizing

GANs or realizing the information bottleneck principle. MINE also optimizes a lower

bound, but tighter, to KL divergence (Donsker-Varadhan representation). Similar to

VDM, MINE uses a neural network as the dual variational function: it is thus scalable,

but without complexity control and unstable.

Another use of KL divergence is scalable variational inference (VI) as shown in AVB

[76]. VI requires KL divergence estimation between the posterior and the prior, which

becomes nontrivial when an expressive posterior distribution is used and requires sam-

ple based scalable estimation. AVB solved it using GAN based adversarial formulation

and a neural network discriminator. Similarly, [97] used GAN based adversarial for-

mulation to obtain KL divergence in amortized inference.

To disentangle latent representations in VAE, [21] proposed TC-VAE which penalized

the KL divergence between marginal latent distribution and the product of marginals

in each dimension. This KL divergence was computed by minibatch based sampling

strategy that gives a biased estimate. None of the existing works considered the theo-
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retical underpinning of unreliable KL-divergence estimates, or mitigating the problem

by controlling the complexity of the discriminator function.

8.3 Preliminaries

Reproducing Kernel Hilbert Space: LetH be a Hilbert space of functions f : X →
IR defined on non-empty space X . It is a Reproducing Kernel Hilbert Space (RKHS)

if the evaluation functional, δx : H → IR, δx : f 7→ f(x), is linear continuous ∀x ∈ X .

Every RKHS,HK , is associated with a unique positive definite kernel, K : X×X → IR,

called reproducing kernel [10], such that it satisfies:

1. ∀x ∈ X , K(., x) ∈ HK (Membership property)

2. ∀x ∈ X ,∀f ∈ HK , 〈f,K(., x)〉HK = f(x) (Reproducing property)

RKHS is often studied using a specific integral operator. Let L2(dρ) be a space of

functions f : X → IR that are square integrable with respect to a Borel probabil-

ity measure dρ on X , we define an integral operator LK : L2(dρ) → L2(dρ) [6, 25]:

(LKf)(x) =
∫
X f(y)K(x, y)dρ(y) This operator will be important in constructing a

function in RKHS and in computing sample complexity.

Mean Embedding in RKHS: Let f : X → IR be a function in RKHS,HK , and p be a

Borel probability measures on X . If Ex∼p
√
K(x, x) <∞, then we have µp ∈ HK called

the mean embedding of the distribution p and defined as [10,45,99]: Ex∼pf = 〈f, µp〉HK
The condition for the existence of mean embedding is readily satisfied since we assume

sup
x,t

K(x, t) <∞.
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8.4 Problem Formulation and Contribution

GAN-based Estimation of KL Divergence: Let p(x) and q(x) be two probability

density functions in space X and we want to estimate their KL divergence using finite

samples from each distribution in a scalable and minibatch compatible manner. As

shown in [76, 97], this can be achieved by using a discriminator function. First, a

discriminator f : X → IR is trained with the objective:

f ∗ = max
f

[Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))] (8.1)

where σ is the Sigmoid function given by σ(x) = ex

1+ex
. Then it can be shown [76, 97]

that the KL divergence KL(p(x)||q(x)) is given by:

KL(p(x)||q(x)) = Ep(x)[f
∗(x)] (8.2)

Sources of Error: Typically, a neural network is used as the discriminator. This

implies that we are considering the space of functions represented by the neural network

of given architecture as the hypothesis space, over which the maximization occurs in

eq.(8.1). We thus must rewrite eq.(8.1) as

f ∗h = max
f∈h

[Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x)))] (8.3)

where h is the discriminator function space. Furthermore, we have only a finite number

of samples, say m, from the distribution p and q. Then, under finite sample, the

optimum discriminator is

fmh = max
f∈h

[ 1

m

∑
xi∼p(xi)

log σ(f(xi)) +
1

m

∑
xj∼q(xj)

log(1− σ(f(xj)))
]

(8.4)

Similarly, we write KL estimate obtained from, respectively, infinite and finite samples

as:

KL(f) = Ep(x)[f(x)], KLm(f) =
1

m

∑
xi∼p(xi)

[f(x)] (8.5)
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With these definitions, we can now write the error in estimation as:

KLm(fmh )−KL(f ∗) = KLm(fmh )−KL(fmh )︸ ︷︷ ︸
Deviation-from-mean error

+ KL(fmh )−KL(f ∗h)︸ ︷︷ ︸
Discriminator induced error

+KL(f ∗h)−KL(f ∗)︸ ︷︷ ︸
Bias

(8.6)

This equation decomposes total estimation error into three terms: 1) deviation from

the mean error, 2) error in KL estimate by the discriminator due to using finite samples

in optimization eq.(8.4), and 3) bias when the considered function space,h, does not

contain optimal function. We leave quantification of second and third term as future

work. Here, we concentrate on quantifying the probability of deviation-from-mean

error which is directly related to observed variance of the KL estimate.

Overview of Contributions: Note that the deviation is the difference between a

random variable and its mean. Based on this observation, we can bound the proba-

bility of this error using concentration inequality and the complexity of function space

of fmh . This requires overcoming the open challenge of measuring the complexity of

neural networks function space. To this end, we propose to construct a function out of

neural network such that it lies on RKHS. This is our first contribution (Section 8.5).

Then, we proceed to bound the probability of deviation-from-mean error through the

covering number of the RKHS space. Lemma 1 and Theorem 2 are our contribution

(Section 8.6). Then we provide insight into how the optimization of eq.(8.4) might

affect discriminator function space HK . Using ideas from mean embedding, we prove

Lemma 3 and Theorem 3 and provide a geometric insight (Section 8.7). This allows us

to present a complete story of how the optimization setup might encourage increase in

the complexity of HK and how to control it (Section 8.8).

8.5 Constructing f in RKHS

To construct a function in RKHS, we use an operator T related to integral operator

LK by LK = TT ∗ [6]. The following theorem due to [5] paves a way for us to construct

a neural function in RKHS.
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Theorem 3. [ [5] Appendix A] A function f ∈ L2(dρ) is in Reproducing Kernel Hilbert

Space, say HK if and only if it can be expressed as

∀x ∈ X , f(x) =

∫
W
g(w)ψ(x,w)dτ(w), (8.7)

for a certain function g : W → R such that ||g||2L2(dτ) < ∞. The RKHS norm of f

satisfies ||f ||2HK ≤ ||g||
2
L2(dτ) and the kernel K is given by

K(x, t) =

∫
W
ψ(x,w)ψ(t, w)dτ(w) (8.8)

Theorem 3 gives us a condition when a square integrable function is guaranteed to lie in

RKHS. We simply choose g(w) = 1, a constant unit function over the domainW . This

means that we can convert a square integrable neural network function f : X → IR

into a function in RKHS, if we make some weights in the neural network stochastic and

average over them. Here, we make the last layer of the neural network to be drawn from

Gaussian distribution, whose parameters are learnt during training. More precisely, we

consider ψ(x,w) = φθ(x)Tw, where φθ(x) denotes neural network transformation until

the last layer, and w is the last linear layer sampled from Gaussian distribution. While

in principle any layer could be made stochastic, we chose this architecture to reduce the

computational cost of sampling. The kernel K, as defined in eq.(8.8), can be obtained

as:

Kθ(x
∗, t∗) =

∫
W
φθ(x

∗)TwwTφθ(t
∗)dτ(w) = φθ(x

∗)T (w̄w̄T + Σ)φθ(t
∗) (8.9)

where w̄ and Σ denote the mean and covariance of w. We sometimes denote the kernel

K by Kθ to emphasize that it is a function of neural network parameters, θ.

With this construction, our discriminator function f lies in RKHS denoted by HK .

With g(w) = 1, it is easy to verify that ||g||2L2(dτ) = 1 since w is sampled from a normal

distribution. The inequality in Theorem 3 gives us ||f ||2HK ≤ 1. It is interesting that

the RKHS norm of function f is upper-bounded by 1. Traditionally, kernel K remains

fixed and the norm of the function f determines the complexity of the function space.

For example, [78] penalized the ||f ||HK as a way to control the function space while
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estimating KL divergence. In our RKHS formulation of neural networks, the nature

of the problem has changed: ||f ||HK cannot increase beyond 1, but the RKHS itself

changes during training since it is determined by the kernel that depends on neural

parameters θ. Therefore, the challenge becomes teasing out how neural parameters

θ affects the complexity of the discriminator function space and how that affects the

deviation-from-mean error in eq.(8.6).

8.6 Bounding the Error Probability of KL Esti-

mates

In this section, we first bound the probability of deviation-from-mean error in terms of

the covering number in Lemma 1. We then use an estimate of the covering number of

RKHS due to [25] to relate the bound to kernel Kθ in Theorem 4, identifying the role

of neural networks in this error bound.

Lemma 1. Let fmHK be the optimal discriminator function in a RKHS HK which is

M-bounded. Let KLm(fmHK ) = 1
m

∑
i f

m
HK (xi) and KL(fmHK ) = Ep(x)[f

m
HK (x)] be the

estimate of KL divergence from m samples and that by using true distribution p(x)

respectively. Then the probability of error at some accuracy level, ε is lower-bounded

as:

Prob.(|KLm(fmHK )−KL(fmHK )| ≤ ε) ≥ 1− 2N (HK ,
ε

4
√
SK

) exp(−mε
2

4M2
)

where N (HK , η) denotes the covering number of a RKHS space HK with disks of radius

η, and SK = sup
x,t

K(x, t) which we refer as kernel complexity

Proof. Let `z(f) = Ep(x)[f(x)]− 1
m

∑
i f(xi) denotes the error in the estimate such that

we want to bound |`z(f)|. We have,

`z(f1)− `z(f2) = Ep(x)[f1(x)− f2(x)]− 1

m

∑
i

f1(xi)− f2(xi)
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We know Ep(x)[f1(x) − f2(x)] ≤ ||f1 − f2||∞ and 1
m

∑
i f1(xi) − f2(xi) ≤ ||f1 − f2||∞.

Using the triangle inequality, we obtain |`z(f1)− `z(f2)| ≤ 2||f1− f2||∞. Now, consider

f ∈ HK , then,

|f(x)| = |〈Kx, f〉| ≤ ||f ||||Kx|| = ||f ||
√
K(x, x) (8.10)

This implies the RKHS space norm and `∞ norm of a function are related by

||f ||∞ ≤
√
SK ||f ||HK (8.11)

Hence, we have:

|`z(f1)− `z(f2)| ≤ 2
√
SK ||f1 − f2||HK (8.12)

The idea of the covering number is to cover the whole RKHS space HK with disks

of some fixed radius η, which helps us bound the error probability in terms of the

number of such disks. Let N (HK , η) be such disks covering the whole RKHS space.

Then, for any function f in HK , we can find some disk, Dj with centre fj, such that

||f − fj||HK ≤ η. If we choose η = ε
2
√
SK

, then from eq.(8.12), we obtain,

sup
f∈Dj
|`z(f)| ≥ 2ε =⇒ |`z(fj)| ≥ ε (8.13)

Using the Hoeffding’s inequality, Prob.(|`z(fj)| ≥ ε) ≤ 2e−
mε2

2M2 and eq.(8.13),

Prob.( sup
f∈Dj
|`z(f)| ≥ 2ε) ≤ 2e−

mε2

2M2 (8.14)

Applying union bound over all the disks, we obtain,

Prob.(sup
f∈H
|`z(f)| ≥ 2ε) ≤ 2N (H, ε

2
√
SK

)e−
mε2

2M2 (8.15)

Prob.(sup
f∈H
|`z(f)| ≤ ε) ≥ 1− 2N (H, ε

4
√
SK

)e−
mε2

8M2

which proves the lemma.
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On M-boundedness of fmHK
To prove the lemma, we assumed that fmHK is M bounded. To see why this is reasonable,

from eq.8.11, we have ||fmHK ||∞ ≤
√
SK ||fmHK ||HK . Since by construction, ||fmHK ||HK ≤ 1,

fmHK is bounded if SK is bounded, which is true by assumption and seems to hold true

in experiments.

Remark 1. We derived the error bound based on the Hoeffding’s inequality by assuming

that our only knowledge about f is that it is bounded. If we have other knowledge, for

example, if we know the variance of f , we could use Bernstein’s inequality instead of

Hoeffding’s inequality with minimal change to the proof. To the extent we are interested

in the contribution of neural network in error bound, however, there is not much gain

by using one inequality or the other. Hence, we stick with Hoeffding’s inequality and

note other possibilities.

Remark 2. Note that in Lemma 1, the radius of disks are inversely related to the

the quantity, SK, meaning that if SK is high, we would need large number of disks

to fill the RKHS space. Hence, it denotes a quantity that reflects the complexity of

the RKHS space. We, therefore, term it kernel complexity. Also in eq. 8.11 and the

discussion about the M-boundedness, we see that the maximum value |f(x)| depends on

SK, again providing insight into how SK may control both maximum fluctuation and

the boundedness.

Lemma 1 bounds the probability of error in terms of the covering number of the RKHS

space. Note that the radius of the disc is inversely related to SK which indicates how

complex the RKHS space defined by the kernel Kθ is. Here Kθ depends on the neural

network parameters θ. Therefore, we denote SK as a function of θ as SK(θ) and term

it kernel complexity. Next, we use Lemma 2 due to [25] to obtain an error bound in

estimating KL divergence with finite samples in Theorem 4.

Lemma 2 ( [25]). Let K : X × X → IR is a C∞ Mercer kernel and the inclusion

IK : HK ↪−→ C(X ) is the compact embedding defined by K to the Banach space C(X ) .

Let BR be the ball of radius R in RKHS HK. Then ∀η > 0, R > 0, h > n, we have

lnN (IK(BR), η) ≤
(
RCh
η

) 2n
h

(8.16)
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where N gives the covering number of the space IK(BR) with discs of radius η, and

n represents the dimension of inputs space X . Ch is given by Ch = Cs
√
||Ls|| where

Ls is a linear embedding from square integrable space L2(dρ) to the Sobolev space Hh/2

and Cs is a constant.

To prove Lemma 2, the RKHS space is embedded in the Sobolev Space Hh/2 using Ls

and then the covering number of the Sobolev space is used. Thus the norm of Ls and

the degree of Sobolev space, h/2, appears in the covering number of a ball in HK . In

Theorem 4, we use this Lemma to bound the estimation error of KL divergence.

Theorem 4. Let KL(fmHK ) and KLm(fmHK ) be the estimates of KL divergence obtained

by using true distribution p(x) and m samples respectively as described in Lemma 1,

then the probability of error in the estimation at the error level ε is given by:

Prob.(|KLm(fmHK )−KL(fmHK )| ≤ ε) ≥ 1− 2 exp

[(
4RCs

√
SK(θ)||Ls||
ε

) 2n
h

− mε2

4M2

]

Proof. Lemma 2 gives the covering number of a ball of radius R in a RKHS space. If

we consider the hypothesis space to be a ball of radius R in Lemma 1 , we can apply

Lemma 2 in it. We fix the radius of discs to η = ε
4
√
SK

in Lemma 1 and substitute

Ch = Cs
√
||Ls|| to obtain the required result.

Theorem 2 shows that the error increases exponentially with the radius of the RKHS

space, complexity of the kernel SK(θ), and the norm of Sobolev space embedding ||Ls||.
Since we have ||f ||HK ≤ 1, we can consider our hypothesis space to be a ball of radius

1. To bound ||Ls||, we need to compute higher order derivatives of K(x, t), which we

leave as future work. This allows us to focus on kernel complexity SK(θ), which is

exponentially related to the probability of deviation-from-mean error.

Note that to bound the deviation-from-mean error, we used union bound and there-

fore, the bound does not explicitly depend on the function fmHK , but only depends on

the complexity SK of the function space HK . However, the optimization of discrimi-

nator (eq.(8.4)) also impacts the complexity SK(θ). To understand this effect, in the



CHAPTER 8. COMPLEXITY CONTROL 127

next section, we present an upper bound on the objective in eq.(8.4), and give some

geometric intuition connecting the optimization objective with the kernel complexity

SK(θ). Using this intuition, we further argue that the optimization of eq.(8.4) may

encourage increment in the complexity, SK(θ), thereby increasing the probability of

deviation from the mean.

8.7 Mean Embedding Upper Bound

In addition to deriving complexity bound, another advantage of using RKHS is that it

allows us to use mean embedding representation. This helps us derive some geometrical

insights into the maximization objective in eq.(8.4), on which we give an upper bound

in Theorem 5.

Theorem 5. Let f ∈ HKθ be a function in RKHS HKθ . Then we have the following

upper bound on the objective of KL divergence estimation:

1

m

∑
xi∼p(x)

log σ(f(xi)) +
1

m

∑
xj∼q(x)

log(1− σ(f(xj))) ≤ log σ[〈µmp − µmq , f〉HK ] (8.17)

and the KL divergence is given by KL = 〈µmp , f〉 where µmp and µmq represent mean

embedding of m samples from distributions xi ∼ p(x) and xj ∼ q(x) with respect to

HK.

The following Lemma is useful to prove this theorem.

Lemma 3. Ep(x) log σ(f(x)) + Eq(y) log(1− σ(f(y))) ≤ log σ[Ep(x)(f(x))−Eq(y)(f(y))]
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Proof.

Ep(x) log σ(f(x)) + Eq(x) log(1− σ(f(x))) = Ep(x) log σ(f(x)) + Eq(x) log(
1

1 + exp(f)
)

= Ep(x) log σ(f(x)) + Eq(x) log(
exp(−f)

1 + exp(−f)
)

= Ep(x) log σ(f(x)) + Eq(x) log σ(−f(x))

≤ log σ[Ep(x)(f(x))] + log σ[Eq(x)(−f(x))]

≤ log σ[Ep(x)(f(x))− Eq(x)(f(x))

where we used the fact that log σ is a concave function and applied Jensen’s inequality

in last two lines and linearity of expectation in the last line.

Proof of Theorem 5. If f lies in the RKHS, then there exists some µmp and µmq such

that

1

m

∑
xi∼p(x)

f(xi) = 〈µmp , f〉HK ,
1

m

∑
xj∼q(x)

f(x) = 〈µmq , f〉HK (8.18)

Applying eq.(8.18) to the Lemma 3 for finite samples, we obtain required result.

Geometric Intuition: Theorem 5 tells us that the upper bound (MEBUB) to the

objective is log σ of the inner product between µmp − µmq and f . The inner product

and KL divergence estimates have been depicted geometrically in Fig. 8.1. When the

objective is maximized, MEBUB may also increase which leads to an increase in the

inner product since log σ is monotonic. When this happens, nothing prevents the

midpoint of the mean embeddings, i.e.,
µmp +µmq

2
, from going away from the origin in

Fig. 8.1. In the next section, we show how this affects kernel complexity SK .

8.8 Fitting Pieces and Complexity Control

Theorem 4 shows that the error bound of the KL estimate is exponentially controlled

by the kernel complexity SK(θ) = sup
x,t

Kθ(x, t). Since the mean of a vector is upper
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bounded by supremum,

||µmp + µmq ||HK =

√
1

m2

∑
i,j

Kθ(yi, yj) + 2Kθ(yi, zj) +Kθ(zi, zj) (8.19)

≤ 2
√

sup
x∈{Y,Z},t∈{Y,Z}

Kθ(x, t) = 2
√
SK(θ) (8.20)

As the training progresses in maximizing the objective in eq.(8.4), the algorithm tries

to do two things: 1) align f with µmp − µmq and 2) increase norms ||µmp − µmq ||HK
and ||f ||HK . For fixed 〈µmp , µmq 〉HK/(||µmp ||.||µmq ||), we can show that the ratio ||(µmp −
µmq )||HK/||µmp + µmq ||HK also remains unchanged. Under this assumption, we could say

that maximizing eq.(8.4) could lead to increment of ||µmp + µmq ||HK , and nothing would

stop the network from going this way. When this happens, the inequality in eq.(8.20)

suggests that SK(θ) also increases, thereby increasing the probability of deviation-

from-the-mean error in the KL estimate by Theorem 4. In other words, as we train the

neural discriminator, the neural network parameters θ change such that the complexity

of RKHS might itself keep increasing which causes exponential growth in the sample

complexity.

To control the complexity of RKHS space, we can control SK(θ) during the training

of the neural network. To do this in a scalable way compatible with neural networks,

we use gradient descent based optimization. Computation of gradient of SK(θ) w.r.t

θ is straightforward using definition of Kθ(x, t) and can be easily realized by using

backpropagation. Ideally, SK(θ) is max.Kθ(x, t) over all the data-pairs (x, t) ∈ X ×
X , which requires passing all the datapoints through neural network. Instead, we

simply compute supremum over the minibatch matrix which contains the 2b×2b entries

corresponding to every pair in 2b elements (b from each distribution p(x) and q(x)).

This is obviously a lowerbound – denoted by Smini(θ) – of SK(θ). To penalize the

RKHS space that are high in complexity, we add a regularization term with parameter

λ to maximize a modified objective:

1

m

∑
xi∼p(xi)

log σ(f(xi)) +
1

m

∑
xj∼q(xj)

log(1− σ(f(xj)))− λ.Sγmini (8.21)

where γ is an estimation of n
h

and treated as a hyperparameter. Optimization of

eq.(8.21) w.r.t. neural network parameters θ allows dynamic control of the complexity
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Figure 8.1: Geometrically representing mean embeddingsof two distributions, their

relation to maximization objective and KL divergence.

of the discriminator function on the fly in a scalable and efficient way. Complete

algorithm is given in Algorithm 2.

8.9 Experimental Results

Experimental Setup: We assume that we have finite sets of samples from two dis-

tributions. We further assume that we are required to apply minibatch based opti-

mization. We consider estimating KL divergence in a simple case of two Gaussian

distributions in 2D, where we know the analytical KL divergence between the two

distributions as the ground truth. We consider three different pairs of distributions

corresponding to true KL divergence values of 1.3, 13.8 and 61.1, respectively and use

m = 5000 samples from each distribution to estimate KL in the finite case.
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Figure 8.2: Comparison of KL divergence estimates (y-axis) using i) infinite samples

(purple), ii) finite samples and a normal neural network discriminator (red), and iii)

finite sample and the presented RKHS discriminator with complexity control (blue).
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Figure 8.3: The effect of the regularization parameter λ in KL estimates (y-axis) plotted

against the varying hidden layer dimension for each KL divergence value.
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Algorithm 2 KL divergence estimation with complexity control

1: Fix minibatch size, b, hyperparameter γ, number of samples m, flat n = 100,

idx = 0,`min =∞
2: Initialize the neural network parameters θ, last layer w ∼ N (w̄, LLT ), such that

w̄ = 0, LLT = I

3: for iteration iter in 1 to itermax do

4: klsum = 0, `adv = 0, n batch = (m/b)

5: for iteration k in 1 to n batch do

6: Sample minibatch {xi}bi=1 from p(x) and {yi}bi=1 from q(x), and J =

{{xi}bi=1, {yi}bi=1}
7: For each xi, yi, sample ε ∼ N (0, I) and obtain samples {wj}dj=1 where wj =

w̄ + Lεj

8: f(x)i,=
1
d

∑
j φθ(xi)

Twj, f(y)i = 1
d

∑
j φθ(yi)

Twj

9: lossd = −1
b

∑
i log σ(f(x)i) + log(1− f(y)i)

10: Smini = max
x∈J,t∈J

φθ(x)T (w̄w̄T + Σ)φθ(t)

11: Backpropagate loss = lossd + λ.Sγmini and update θ, w̄, L

12: klsum = klsum + 1
b

∑
i log σ(f(x)i)

13: `adv = `adv + lossd

14: end for

15: ` = `adv/n batch, kliter = klsum/n batch

16: if ` < `min then kl = kliter, idx = iter

17: else if iter > idx+ flat n then return kl

18: end if

19: end forreturn kl

As the discriminator, we use a fully connected neural network with two hidden layers.

The number of hidden units are varied to understand the effect of the discriminator

complexity on the fluctuation of the KL estimate. The dimensions are kept identical

between the neural-net discriminator and the RKHS discriminator, the latter being

different only in that its last layer is stochastic. Full architecture details is provided

in Appendix B. We perform random estimation experiment 30 times and report the

mean, standard deviation, scatter and box plots.
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Finite v.s. Infinite Samples: In infinite samples experiment, we assume that we can

continuously sample from the model generating data from the two given distributions.

The results of KL estimates using infinite samples is shown in Fig. 8.2 and Table.8.1, in

comparison with estimates using finite samples without controlling the complexity of

the neural-net discriminator. We observe that when we use infinite samples (purple),

we obtain an estimate with low variance and values close to the analytical truth in KL

= 1.3 and KL = 13.8 and an underestimate when KL = 61.1. In contrast, when we use

finite samples without controlling the complexity of the neural-net discriminator (red),

the estimates fluctuated heavily confirming our hypothesis: we need to control the

complexity of the function when the number of samples is finite, or else the probability

of estimation error increases.

Complexity Control: Fig. 8.2 and Table.8.1 compare the estimation of KL diver-

gence with and without controlling the discriminator complexity. With discriminator

complexity penalized (blue in Fig. 8.2) in eq. (8.21), the KL estimates are much more

reliable (low variance) and closer to the estimates from infinite samples. Note in Fig.8.2

that, without complexity penalization, the erratic behavior of the KL estimator wors-

ens as the number of hidden layers increases in the discriminator. This is consistent

with our theory because increasing the number of hidden layers increases the com-

plexity of the discriminator. This highlights the need of higher degree penalization of

the discriminator complexity as a neural network with increased capacity is used to

estimate higher values of KL divergence.

Effect of Regularization Parameter: Table 8.2 and Fig. 8.3 show the effect of the

regularization parameter λ that tunes the level of complexity control in eq. (8.21). Both

in the table and the figure, the fluctuation in estimates decreases as we increase the

value of λ. Fig. 8.3 shows the results of these experiments varying the latent dimension

and shows that the pattern is consistent in different in all cases. Furthermore, as can

be seen in Fig. 8.3, for a discriminator with low complexity (e.g., latent dimension =

10), a smaller value of λ is sufficient to yield low-variance estimate. As the size of the

hidden layer increases, we need to penalize the complexity aggressively with a higher

value of λ in order to obtain the same level of consistency. This further supports our
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Table 8.1: Comparison of KL-divergence estimates using different methods; hidden

layer dimension = 25.

Method
True KL

1.3 13.8 61.1

MINE Unstable Unstable Unstable

VDM Unstable Unstable Unstable

Infinite

sample

1.36± 0.05 12.58± 1.49 32.4± 7.87

NN Disc 2.07± 0.42 20.63± 9.82 149.9± 65

Complexity

control

1.47± 0.15 13.64± 2.39 24.04± 8.2

Table 8.2: The effect of the regularization parameter λ; hidden layer dimension = 20

λ
True KL

1.3 13.8 61.1

5e-5 1.46± 0.22 16.65± 10.4 116.7± 116

1e-4 1.56± 0.25 30.97± 10.5 39.17± 18.5

5e-4 1.47± 0.11 13.44± 2.68 18.36± 3.9

theory.

Underestimation for High KL Divergence We observe in Fig.8.2 and Table. 8.1

that, for KL = 61.1, results from both infinite samples and finite samples with complex-

ity control give underestimated KL divergences even though they reduce fluctuation

significantly. This is not surprising since we were focusing on deviation-from-mean

error. The total estimation error consists of two additional errors: discriminator in-

duced error and the bias (see eq.8.6). For the small KL divergence, simply controlling

complexity was sufficient to minimize all the errors, but for higher value, it is no longer

sufficient. The underestimation might be either because of the bias or error induced by
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incorrect discriminator function. High bias might be caused if we control the function

space too much such that the optimum discriminator f ∗HK is not close to true discrim-

inator function, f ∗ (see bias-variance trade-off [11, 25]). It would be an interesting

future direction to quantify all three error terms in eq.(8.6).

8.10 Conclusions & Discussion

We have shown that using a regular neural network as a discriminator in estimating

KL divergence results in unreliable estimation if the complexity of the function space

is not controlled. We then showed a solution by penalizing the kernel complexity in a

scalable way using neural networks.

The idea of constructing a neural-net function in RKHS and complexity control could

also be useful in stabilizing GANs, or potentially in improving generalization of neural

networks. Several papers have identified issues with the stability of GANs [61, 74,

101]. One common understanding is that, in its raw form, we do not enforce the

discriminator function to be smooth or regular around the neighborhood of its inputs.

Currently, the most successful way to stabilize GANs is to enforce smoothness by

gradient penalization. Even in variations like Wasserstein GAN [4, 46] and MMD

GAN [12], gradient penalty is crucial to achieve stable results. On the light of the

present analysis, we believe that the gradient penalty can be thought as one way to

control the complexity of the discriminator. The objective and nature of optimization

is such that the complexity of discriminator is bound to increase and therefore some

way of decreasing complexity is a must. Similarly, generalization of neural network

classifiers and regressors could be improved with complexity control.
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8.11 Summary and Answer to Research Questions

Q.3. b) How can we understand and quantify the role of smoothness and

regularity properties of the neural network regarding generalization?

In the last chapter, we showed that smoothness helps in improving genearlization.

But, when using neural networks, how to precisely define and quantify the degreee

of smoothness and its role in generalization? Towards answering this question, this

chapter investigates a functional analysis based approach and proposes the complexity

of function space as a better measure of whether a neural network behaves well and

whether it generalizes well. However, this chapter only establishes the importance

of complexity control in stabilizing the neural network. Our conjecture is that this

complexity measure lies at the core of both the stability and generalization of neural

network. However, this chapter does not provide sufficient evidence for the latter.



Chapter 9

Conclusion and Future work

If you can approach the world’s complexities, both its glories and its horrors, with an

attitude of humble curiosity, acknowledging that however deeply you have seen, you

have only scratched the surface, you will find worlds within worlds, beauties you could

not heretofore imagine, and your own mundane preoccupations will shrink to proper

size, not all that important in the greater scheme of things.

- Daniel C. Dennett

In this dissertation, we were interested in solving the inverse problem of electrophys-

iological imaging. Framing it as a learning problem helped us analyze it, understand

the challenges and apply theories from Bayesian inference and learning theory to solve

it under different settings. In chapter 1, we presented a unifying perspective, which

distilled the problem to learning a mapping or a conditional distribution between two

domains: measurement and signal. Using the forward model and prior distribution of

the electrophysiological signal led us to Bayesian inference in the PGM framework. On

the other hand, using samples from the joint distribution allowed us to use learning

theory. In each of the methods, we focused on improving generalization of the learned

inverse function.

Below we summarize the contributions of this dissertation and room for improvement

138
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in the future:

1. In chapter 4, we modeled the error that might be introduced in the prior (dy-

namic) model as a random variable in a PGM framework. We introduced ideas

like variational lower bound of the generalized Gaussian distribution in modeling

sparsity of the error random variable and combined variational Bayes with expec-

tation maximization during inference. This method achieved good improvement

over previous method that was unable to model error in the dynamic model.

However, it did not model the error in the forward model. We speculate that the

error in the forward model could have some role in the algorithm’s poor perfor-

mance in real data experiments. It may, therefore, be helpful to model that error

and if possible adapt it according to the data. This could be a possible research

direction in the future. Another direction is to incorporate additional knowledge

like that of geometry in the PGM framework. This may help in estimating the

error in forward model with the help of geometric parameterization of the for-

ward model. Geometric parameterization may also help in adapting the error of

the forward model.

2. In chapter 5, we proposed to learn a generative model of the TMP to use as a prior

model in a PGM framework. A variational autoencoder learnt a generative model

from simulation examples of the cardiac TMP signals. Using the latent variable

prior distribution, we performed the Bayesian inference by applying Expectation

Maximization and gradient descent. One limitation of this method was that it

required personalized simulation and learning of prior distribution; also, inference

could only be achieved in same heart-torso geometry. One interesting future

direction would be to learn a geometry dependent prior distribution so that it

could help generalize knowledge to new geometry in the future. At the same

time, the generative model could benefit from multiple signal pairs from different

heart-torso geometry.

3. In chapter 6, we took a purely data based approach where a neural network

learned an inverse solution from samples of joint distribution. We propose two

ideas to improve generalization: 1) Learning invariant representations, 2) Learn-
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ing smooth conditional functions. Learning invariant representation is based on

the out of distribution (OOD) assumption i.e. we may get test examples that

are different from the samples that were used in the training. Such discrepancy

may be caused by a nuisance factor or may be a part of the data distribution.

When shift in the distribution is caused by nuisance factor, like geometric factor

in one of the experiments, we showed that using information bottleneck principle

to distill only the useful information helps in robustness against nuisance factors

and improves generalization. Another strategy was to improve smoothness of the

decoder network to improve generalization. We supported this idea based on an-

alytical learning theory and showed that simple stochasticity in the latent space

helps to learn smooth decoder functions (functions with low variation), which in

turn helps generalization due to analytical learning theory.

However, there is yet to formally define what smoothness means and how to

quantify its degree. Quantifying smoothness and quantitatively relating it with

generalization might be a good future direction work. Similarly, formalizing the

notion of invariance to improve generalization could be a good direction to pursue.

One promising work in this direction is that of Invariance Risk Minimization

(IRM) [3]. Building upon IRM could be an interesting research direction.

4. Bayesian methods use the prior knowledge and the Bayesian inference strategies

but are computationally expensive and slow at the test time because of the need to

perform Bayesian inference for every test example. Direct learning from samples

using deep networks is fast but does not incorporate the prior knowledge or

utilizes the Bayesian inference. May be there is a way to combine best of the

both worlds which makes Bayesian inference faster and/or explicitly incorporates

forward model while learning from samples. Exploring this combination could be

a good future direction work.

5. In chapter 8, we move a little bit towards the general question of how to quantify

the connection between the smoothness of functions and generalization. Towards

this end, we started with the hypothesis that the function complexity is an en-

compassing notion that affects both the stability and generalization of neural
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networks. While we demonstrated how complexity plays role in stability in chap-

ter 8, we have not presented compelling argument regarding generalization. To

test the hypothesis regarding generalization, especially in the context of inverse

problem, we need to extend our setup for a multi variable function. The formu-

lation of a function in RKHS was much simpler as a single variable function. It

is not straightforward how to generalize this construction for the multi variate

function. That could be a good future direction of research.

9.1 Broader Future Directions

We started with a specific question firmly grounded on solving the inverse problem of

electrophysiological imaging. Later, it enabled us to ask fundamental question about

learning and generalization. Perhaps, it is the nature of research. We answered specific

questions about learning the inverse function and general questions about learning and

generalization by the end of dissertation. Subsequently, the thoughts, discussion and

rumination during the course of research described in this dissertation sparked off

general research directions as summarized below.

Generalization by incorporating geometry

In the problem of electrophysiological imaging, our ultimate goal is to be able to

perform imaging in a new real patient. Therefore, we would like to learn a function

that can generalize to a new heart-torso geometry. Without incorporating geometric

information, being able to perform accurate inference in a new geometry would require

training in a lot of examples (when learning from samples) or learning an accurate

prior (in case of inference in PGM models). A much better way is to incorporate

learning conditioned on the geometry and other available personalized parameters.

Conditioning on geometry and personalized parameters would help in much better

generalization to new patients/cases.
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Generalization via transfer learning and domain adaptation

Our ultimate goal is to perform the inverse electrophysiological imaging in the real

patients. To apply data driven methods like machine learning would require large

amount of real data, which is not currently available. To circumvent this problem,

we have been working with the simulated data. However, training on simulation and

transferring to the real world has not yielded impressive results even though the inverse

imaging works fine in the simulation data. To resolve this issue, we need to transfer

learning from simulated to real data. Hence, we need to understand transfer learning at

a fundamental level to resolve the question of how to apply it in this context. Another

related approach is to adapt the learning to the real data based on a few available real

data. This falls under the domain adaptation regime where the target domain is the

real domain and simulation is the source domain.

Generalization via meta learning

To be able to generalize the knowledge (of inverse function) learnt from a few real

data (from a few patients) or simulation data to yet unseen patient who may arrive in

the future, we may need to use ideas from meta learning. Previously suggested ideas

incorporating geometry, transfer learning and domain adaptation are still useful, but

may be wanting when it comes to the real patient that was never seen before. In meta

learning, we expect that the new case will be different. The goal of meta learning is

to devise a way to handle novel difference by keeping track of changes. The idea is to

learn pattern of how things are changing in the current set of data and predict how

they might change in the future. Meta learning may prove to be very useful in the

context of out of distribution generalization.
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Connection between complexity, generalization and stability of GAN

Several research works in generalization and adversarial robustness have pointed out

the importance of the smoothness of the neural functions in the generalization and ad-

versarial robustness. In the last chapter, we conjectured that the notion of complexity

is yet another connecting thread between generalization and adversarial robustness.

We provided evidence that the complexity control stabilizes adversarial training. How-

ever, this was a very specific setting - stability of adversarial training to estimate KL

divergence from samples of two distributions. We also argued that the training was

such that complexity was bound to increase. In other scenarios of GAN training, does

similar phenomenon hold? Does controlling complexity also help generalization as we

conjectured? These questions are important unanswered questions. Moreover, com-

plexity was presented as a quantitative measure of something related to smoothness

that affects generalization. If complexity is not a good indicator of generalization of

deep networks, we have to ask again how to quantify the measure of smoothness and

its effect on generalization.

OOD generalization versus uncertainty quantification

Out of distribution set of data is a huge set, it contains everything that was not used

during training. Obviously, any learning algorithm would not be able to generalize

to all the data outside of the training distribution, but we may be able to generalize

to some data. For the data for which generalization is not possible, may be it is

possible to flag the prediction by observing the uncertainty. In summary, we should

consider out of distribution generalization and uncertainty quantification under the

same framework. Currently, however, there exists two lines of research one trying

to improve OOD generalization and other trying to quantify uncertainty when test

data lies outside distribution. It is also possible that the ideas in two direction are

incompatible or competing with each other.

It is important to develop a unifying theory which considers both generalization and
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uncertainty quantification in a common framework, and provides a mechanism to dif-

ferentiate different types of OOD test data. One promising research direction on OOD

generalization is invariant risk minimization (IRM) [3]; it would be interesting to inves-

tigate how probabilistic reasoning and uncertainty quantification could be incorporated

into this framework to develop a unified theory.
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Appendix A

Appendix of Chapter 4

A.1 Derivation of Variational Lower Bound

Lemma 4.

−|x|p= sup
γ>0

(
−x

2

2γ
− (

2− p
2

)(
1

pγ
)

p
p−2

)

Proof. We use Fenchel-Legendre duality for convex functions to prove this theorem.

Let’s define a variable y as y = x2 and a function f as:

f(y) = −|x|p= −yp/2, ∀y > 0 (A.1)

which is convex function of y in the domain y > 0. Hence, Fenchel-Legendre duality is

used to obtain

f(y) = sup
λ

(λy − f ∗(λ)) (A.2)

where conjugate function f ∗(λ) is given by

f ∗(λ) = sup
y>0

(λy − f(y)) = sup
y>0

(λy + yp/2) (A.3)
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Supremum in eq.(A.3) is obtained at ŷ = [(−λ)2
p
]

2
p−2 . Substituting ŷ back in A.3, we

get,

f ∗(λ) = (−λ)
p
p−2 (

2− p
2

)(
2

p
)

p
p−2 = (−λ)

p
p−2 z(p) (A.4)

where, z(p) = (2−p
2

)(2
p
)

p
p−2 . Note that y is always positive in its domain, and thus λ is

always negative. Substituting value of f ∗(λ) back to equation A.2,

f(y) = sup
λ<0

(λy − (−λ)
p
p−2 z(p)) (A.5)

Putting λ = −1/2γ, we have,

f(y) = sup
γ>0

(− y

2γ
− (

1

2γ
)

p
p−2 z(p))

= sup
γ>0

(− y

2γ
− 2− p

2
(

1

pγ
)

p
p−2 ) (A.6)

Setting y = x2 completes the proof.

Lemma 5.

exp(
−|x|p

ζ
) = sup

τ>0
exp(−x

2

2τ
) exp(−2− p

2
(

1

pτ
)

p
p−2 ζ

2
p−2 )

Proof. Multiplying both sides of Lemma 1 by 1/ζ yields

f(y)

ζ
= sup

γ>0
(− y

2γζ
− 2− p

2ζ
(

1

pγ
)

p
p−2 ).

Setting τ = ζγ, we have,

−|x|p

ζ
= sup

τ>0
(− y

2τ
− 2− p

2ζ
(
ζ

pτ
)

p
p−2 )

= sup
τ>0

(− y

2τ
− 2− p

2
(

1

pτ
)

p
p−2 ζ

2
p−2 ) (A.7)

Taking exponent and replacing y = x2 completes the proof.

Proof of Theorem 1
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Proof. Using Lemma 2 in p(x|α) = C
αN

exp(
−

∑
i|xi|p
αp

) yields

p(x|α) = sup
τ>0

C

αN
exp

(
−
∑
i

x2
i

2τi
−
∑
i

2− p
2

(
α2

pτi
)

p
p−2

)
= sup

λ>0

C

αN
exp

(
− xTΛx

2
− 2− p

2
(
α2

p
)

p
p−2

∑
i

λ
p
p−2

i

)
where λi = 1/τi and Λ = diag(λ)

A.2 Calculation of λ

∂

∂λi

(
Eq(u,η) [log (p(η|α,λ))]

)
= 0

∂

∂λi

(
Eq(u,η)

[
ηTDTΛDη

2
+

2− p
2

(
α2

p
)

p
p−2

∑
i

λ
p
p−2

i

])
= 0

tr(Eq(η)[ηη
T ]did

T
i ) = (

λiα
p

p
)

2
p−2

λi =
p

αp
1

(tr([η̄η̄T + Ση]did
T
i ))

2−p
2

(A.8)

The variational parameter λ depends on another parameter α. To obtain an optimum

value of α, we repeat the same process but take derivative with respect to alpha.

∂

∂α

(
Eq(u,η)

[
Nlog(α) +

2− p
2

(
α2

p
)

p
p−2

∑
i

λ
p
p−2

i

])
= 0

p

αp
=

(
N∑
i λ

p
p−2

i

) 2−p
2

(A.9)

Using equation A.9 into A.8, we finally obtain,

λi =

(
s

tr([η̄η̄T + Ση]did
T
i )

) 2−p
2

where

s =
N∑
i λ

p
p−2

i
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A.3 Reducing Computational Cost

Σu = (βHTH + Σp
−1)−1

= Σp −ΣpH
T (HΣpH

T + β−1I)−1HΣp (A.10)

ū = Σu(βHTy + Σp
−1ud)

= ΣpH
T (HΣpH

T + β−1I)−1y + (βΣpH
TH + I)−1ud (A.11)

where Σp = Σd + (DTΛD)−1.

Proof. Eq.(A.10) readily follows from Woodbury Inverse Identity. To prove eq.(A.11),

we prove each term. For the first term, we multiply both sides of Σ−1
u = βHTH +

Σp
−1on the right with ΣpH

T to obtain eq.(A.12); and multiply it with Σu on the left

and (HΣpH
T + β−1I)−1y on the right to obtain eq.(A.13):

Σ−1
u ΣpH

T = βHT (HΣpH
T + β−1I) (A.12)

ΣpH
T (HΣpH

T + β−1I)−1y = βΣuH
Ty (A.13)

To prove the second term, we start with the definition:

Σ−1
u = Σ−1

p (βΣpH
TH + I) (A.14)

and multiply it with Σu on the left and Σp
−1ud on the right:

(βΣpH
TH + I)−1ud = ΣuΣp

−1ud (A.15)
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A.4 Proof of Result 1

Proof. Σyη = β−1I + HA−1HT where, A = (DTΛD)

Using Woodbury identity,

Σ−1
yη

= βI−H(A + HTH)−1HT

= βI−US(β−1V TAV + STS)−1STUT

∴ yTηΣ−1
yη

yη = βyTηyη − tr(zzTS(β−1V TAV + STS)−1ST )

= βyTηyη −
〈
zzT ,S(β−1V TAV + STS)−1ST

〉
where H = USV T is the singular value decomposition and z = UTyη. Finally,

replacing A = (DTΛD), we obtain,

yTηΣ−1
yη

yη = βyTηyη −
〈
zzT ,S(β−1V TDTΛDV + STS)−1ST

〉
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Appendix of Chapter 8

B.1 Details of experimental setup

Neural RKHS discriminator architecture (Proposed method)

Fully connected

Leaky ReLU

Fully connected

Leaky ReLU

For the RKHS discriminator, this gives φθ(x) for the input data x. Then, f(x) needs

to defined as in line 8 of Algorithm 1. Similarly, total loss with complexity penalization

is computed as line 11 in Algorithm 1.

Neural network discriminator architecture

Fully connected

Leaky ReLU

Fully connected

Leaky ReLU

Fully connected
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For the Neural net discriminator, this would directly give f(x) for the input data x.

Also, loss would be defined by line 9, no penalization as in line 11 of Algorithm 1.

Learning rate: 5× 10−3

γ : 0.05

No. of samples from each distribution: 5000

Minibatch size: 50

Hyperparameter selection: The hyperparameters like learning rate and γ were

selected by first estimating KL divergence at a mid value like 13. Then, same value

was used in all experiments.


